韩国亚洲伊人久久综合影院,日本在线观看公司入口视频,国产成人精品久久综合电影,久久极品免费视频

    首頁 > 科研隊伍 > 副研究員/副教授

副研究員/副教授

    簡歷

  •        鄭超磊,男,副研究員,主要從事基于遙感觀測的氣候變化對生態(tài)水文過程的影響及地表水熱通量觀測和模擬研究工作,在遙感蒸散發(fā)算法、全球蒸散發(fā)估算及產(chǎn)品和系統(tǒng)、干旱區(qū)氣候變化及植被水分利用策略等方面取得了重要研究進展。
    教育背景
    ?2010.10-2013.09,日本國靜岡大學,環(huán)境與能源系統(tǒng)專業(yè),理學博士
    ?2006.09-2009.07,中國科學院地理科學與資源研究所,自然地理學專業(yè),理學碩士
    ?2002.09-2006.07,河南大學,地理科學專業(yè),理學學士
     
    工作經(jīng)歷
    ?2023.03-至今,中國科學院空天信息創(chuàng)新研究院,遙感科學國家重點實驗室,副研究員
    ?2023.05-2023.11,荷蘭代爾夫特理工大學,訪問學者
    ?2020.03-2023.03,中國科學院空天信息創(chuàng)新研究院,遙感科學國家重點實驗室,助理研究員
    ?2014.04-2020.03,中國科學院遙感與數(shù)字地球研究所,遙感科學國家重點實驗室,助理研究員
    ?2013.10-2014.04,日本國靜岡大學,農(nóng)學部,外國人研究員 

    研究方向

  • 水循環(huán)遙感,重點開展蒸散發(fā)觀測、模擬和遙感監(jiān)測等研究 

    承擔科研項目情況

  • (1)國家自然科學基金面上項目:基于遙感的青藏高原蒸散發(fā)時空變化驅動機制及反饋作用研究, 項目負責人, 2022.01—2025.12
    (2)國家自然科學基金重大項目:陸地水循環(huán)關鍵參量時空多尺度智慧化遙感, 子課題負責人, 2021.01—2025.12
    (3)國家自然科學基金青年項目:多源遙感高分辨率時空連續(xù)地表實際蒸散發(fā)算法研究, 項目負責人, 2019.01—2021.12
    (4)國家重點研發(fā)計劃:面向水資源管理的天然水循環(huán)要素遙感監(jiān)測技術研究子課題-蒸散發(fā)遙感反演, 子課題負責人, 2017.07—2020.12
    (5)國家重點研發(fā)計劃:大尺度全球變化數(shù)據(jù)產(chǎn)品快速生成方法子課題-全球ET產(chǎn)品快速生成方法研究, 子課題負責人, 2016.07—2021.01
    (6)中國科學院先導專項子課題:全球中低分辨率時序空間信息產(chǎn)品, 子任務負責人, 2018.01—2022.12
    (7)遙感科學國家重點實驗室自由探索/青年人才項目:面向高分辨率地表實際蒸散發(fā)的時空數(shù)據(jù)融合研究, 負責人, 2016.06—2017.12
    (8)可持續(xù)發(fā)展大數(shù)據(jù)國際研究中心開放研究計劃項目:全球陸地生態(tài)系統(tǒng)耗水及水分利用效率估算方法及產(chǎn)品, 參與, 2023.01—2024.12
    (9)“一帶一路”國際科學組織聯(lián)盟(ANSO)聯(lián)合研究合作專項:北非地區(qū)水資源及農(nóng)業(yè)用水監(jiān)測與評估, 參與, 2022.12—2025.12
    (10)第二次青藏科考研究專題:亞洲水塔區(qū)水循環(huán)動態(tài)監(jiān)測與模擬, 參與, 2022.11—2024.10
    (11)國家重大科學研究計劃(973)課題:高分辨率陸表能量水分交換過程的機理與尺度轉換研究, 參與, 2015.01—2019.09 

    獲獎及榮譽

  • (1)2022年度優(yōu)秀共享開放遙感數(shù)據(jù)集十大最受歡迎年度數(shù)據(jù)集“ETMonitor 全球 1 公里分辨率地表實際蒸散發(fā)數(shù)據(jù)集”(排名第一)
    (2)2021年度優(yōu)秀共享開放遙感數(shù)據(jù)集十大最具價值年度數(shù)據(jù)集“中國與東盟1km分辨率地表蒸散發(fā)數(shù)據(jù)集”(排名第三)
    (3)第二屆中國陸面蒸散發(fā)研究大會“優(yōu)秀青年學者報告獎” 

    代表性成果

  • 1.學術論文
    [1]Zheng C., Jia L., Zhao T., 2023. A 21-year dataset (2000–2020) of gap-free global daily surface soil moisture at 1-km grid resolution. Sci. Data 10, 1–14. https://doi.org/10.1038/s41597-023-01991-w.
    [2]Mi P., Zheng C.(*), Jia L., Bai Y., 2023. Reconstruction of Global Long-Term Gap-Free Daily Surface Soil Moisture from 2002 to 2020 Based on a Pixel-Wise Machine Learning Method. Remote Sens. 15. https://doi.org/10.3390/rs15082116.
    [3]Bennour A., Jia L., Menenti, M., Zheng C., Zeng Y., Barnieh B.A., Jiang M., 2023. Assessing impacts of climate variability and land use/land cover change on the water balance components in the Sahel using Earth observations and hydrological modelling. J. Hydrol. Reg. Stud. 47, 101370. https://doi.org/10.1016/j.ejrh.2023.101370.
    [4]鄭超磊, 賈立, 胡光成.高分一號衛(wèi)星遙感數(shù)據(jù)驅動ETMonitor模型估算16 m分辨率蒸散發(fā)及驗證. 遙感學報, 2023, 27(3): 758-768. DOI: 10.11834/jrs.20232477. 
    [5]Zheng C., Jia L., Hu G., 2022. Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite earth observations. J. Hydrol. 613, 128444. https://doi.org/10.1016/j.jhydrol.2022.128444.
    [6]Bennour, A., Jia L., Menenti M., Zheng C., Zeng Y., Asenso B. B., Jiang M., 2022. Calibration and Validation of SWAT Model by Using Hydrological Remote Sensing Observables in the Lake Chad Basin. Remote Sens. 14, 1511. https://doi.org/10.3390/rs14061511.
    [7]Du D., Jia L., Zheng C., Chen Q., Jiang M., Hu G., Lu J., 2022. Estimation of cropland gross primary productivity by integrat- ing water availability factor in light-use-efficiency-based model and satellite observations. Remote Sens. 1–24.
    [8]Zheng C., Jia L., 2022. Evaluation of Different Methods for Soil Heat Flux Estimation at Large Scales Using Remote Sensing Observations. Int. Geosci. Remote Sens. Symp. 2022-July, 6081–6084. https://doi.org/10.1109/IGARSS46834.2022.9883851.
    [9]Xu L., Zheng C.(*), Ma Y., 2021. Variations in precipitation extremes in the arid and semi-arid regions of China. Int. J. Climatol. 41, 1542–1554. https://doi.org/10.1002/joc.6884.
    [10]Gan G., Liu Y., Chen D., Zheng C., 2021. Investigation of a nonlinear complementary relationship model for monthly evapotranspiration estimation at global flux sites. J. Hydrometeorol. 22. https://doi.org/10.1175/JHM-D-20-0224.1.
    [11]Menenti M., Li X., Jia L., Yang K., Pellicciotti F., Mancini M., Shi J., Escorihuela M.J., Zheng C., et al., 2021. Multi-source hydrological data products to monitor high asian river basins and regional water security. Remote Sens. 13, 1–29. https://doi.org/10.3390/rs13245122.
    [12]Paciolla N., Corbari C., Hu G., Zheng C., Menenti M., Jia L., Mancini M., 2021. Evapotranspiration estimates from an energy-water-balance model calibrated on satellite land surface temperature over the Heihe basin. J. Arid Environ. 188. https://doi.org/10.1016/j.jaridenv.2021.104466.
    [13]Zhou J., Jia L., Menenti M., van Hoek M., Lu J., Zheng C., Wu H., Yuan X., 2021. Characterizing vegetation response to rainfall at multiple temporal scales in the Sahel-Sudano-Guinean region using transfer function analysis. Remote Sens. Environ. 252. https://doi.org/10.1016/j.rse.2020.112108.
    [14]鄭超磊, 胡光成, 陳琪婷, 賈立.遙感土壤水分對蒸散發(fā)估算的影響研究. 遙感學報, 2021, 25(4): 990-999. DOI: 10.11834/jrs.20210038.
    [15]趙天杰,施建成,徐紅新, 孫彥龍, 陳德清, 崔倩, 賈立, 黃碩, 牛升達, 李秀偉, 閻廣建, 陳良富, 柳欽火, 趙凱, 鄭興明, 趙利民, 鄭超磊, 等.閃電河流域水循環(huán)和能量平衡遙感綜合試驗. 遙感學報, 2021, 25(04):871-887.
    [16]Zheng C., Jia L., 2020. Global canopy rainfall interception loss derived from satellite earth observations. Ecohydrology 13. https://doi.org/10.1002/eco.2186.
    [17]Lu J., Jia L., Zheng C., Tang R., Jiang Y., 2020. A scheme to estimate diurnal cycle of evapotranspiration from geostationary meteorological satellite observations. Water 12. https://doi.org/10.3390/W12092369.
    [18]van Hoek M., Zhou J., Jia L., Lu J., Zheng C., Hu G., Menenti M., 2020. A prototype web-based analysis platform for drought monitoring and early warning. Int. J. Digit. Earth 13, 817–831. https://doi.org/10.1080/17538947.2019.1585978.
    [19]Zhao T., Shi J., Lv L., Xu H., Chen D., Cui Q., Jackson T.J., Yan G., Jia L., Chen L., Zhao K., Zheng X., Zhao L., Zheng C., Ji D., Xiong C., Wang T., Li R., Pan J., Wen J., Yu C., Zheng Y., Jiang L., Chai L., Lu H., Yao P., Ma J., Lv H., Wu J., Zhao W., Yang N., Guo P., Li Y., Hu L., Geng D., Zhang Z., 2020. Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sens. Environ. 240. https://doi.org/10.1016/j.rse.2020.111680.
    [20]Menenti M., Jia L., Mancini M., Li X., …, Zheng C., et al., 2020. High Elevation Energy and Water Balance: the Roles of Surface Albedo and Temperature. Journal of Geodesy and Geoinformation Science, 3(4): 70-78.
    [21]胡光成, 周杰, 盧靜, 鄭超磊, 賈立.中國西南地區(qū)歷年月度干旱指數(shù)(1951-2016)和8天頻率土壤濕度(2007-2016)數(shù)據(jù)集.全球變化數(shù)據(jù)學報(中英文), 2020, 4(03):248-256.
    [22]Zheng C., Jia L., Hu G., Lu J., 2019. Earth observations-based evapotranspiration in Northeastern Thailand. Remote Sens. 11. https://doi.org/10.3390/rs11020138.
    [23]Chen Q., Jia L., Menenti M., Hutjes R., Hu G., Zheng C., Wang K., 2019. A numerical analysis of aggregation error in evapotranspiration estimates due to heterogeneity of soil moisture and leaf area index. Agric. For. Meteorol. 269–270, 335–350. https://doi.org/10.1016/j.agrformet.2019.02.017.
    [24]Xu L., Zheng C., Wang Z.C, Nyongesah M.J., 2019. A digital camera as an alternative tool for estimating soil salinity and soil surface roughness. Geoderma 341. https://doi.org/10.1016/j.geoderma.2019.01.028.
    [25]Zheng C., Jia L., Hu G., Lu J., 2019. Evapotranspiration estimation in tropical monsoon regions using improved ETMonitor algorithm, in: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, pp. 6891–6894.
    [26]Lu J., Zheng C., Jia L., Hu G. 2019. Adaptability of Six Global Drought Indices Over China. 2019 IEEE International Geoscience and Remote Sensing Symposium, 9922-9925. DOI: 10.1109/IGARSS.2019.8899184.
    [27]盧靜, 賈立, 鄭超磊, 胡光成. 遙感水分收支對區(qū)域水資源估算潛能. 遙感技術與應用, 2019, 34(03):630-638. DOI: 10.11873/j.issn.1004-0323.2019.3.0630.
    [28]Lu J., Jia L., Menenti M., Yan, Y., Zheng C., Zhou J., 2018. Performance of the Standardized Precipitation Index Based on the TMPA and CMORPH Precipitation Products for Drought Monitoring in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 1387–1396. https://doi.org/10.1109/JSTARS.2018.2810163.
    [29]Sun Y., Jia L., Chen Q., Zheng C., 2018. Optimizing window length for turbulent heat flux calculations from airborne eddy covariance measurements under near neutral to unstable atmospheric stability conditions. Remote Sens. 10, 1–27. https://doi.org/10.3390/rs10050670.
    [30]柳欽火, 吳俊君, 李麗, 俞樂, 李靜, 辛曉洲, 賈立, 仲波, 牛錚, 徐新良, 孟慶巖, 趙靜, 張海龍,胡光成, 鄭超磊. “一帶一路”區(qū)域可持續(xù)發(fā)展生態(tài)環(huán)境遙感監(jiān)測.遙感學報, 2018, 22(4):686-708. DOI:10.11834/jrs.20187264. 
    [31]Zheng C., Jia L., Hu G., Menenti M., Lu J., Zhou J., Wang K., Li Z., 2017. Assessment of Water Use in Pan-Eurasian and African Continents by ETMonitor with Multi-Source Satellite Data, in: IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/57/1/012050.
    [32]Wang N., Jia L., Zheng C., Menenti M., 2017. Estimation of subpixel snow sublimation from multispectral satellite observations. J. Appl. Remote Sens. 11. https://doi.org/10.1117/1.JRS.11.046017.
    [33]賈立*, 胡光成, 鄭超磊, 周杰, 王昆, 李占勝, 柳欽火. 中國-東盟1 km分辨率地表蒸散發(fā)數(shù)據(jù)集(2013), 全球變化數(shù)據(jù)學報, 2017, 1(3): 282-289. DOI: 10.3974/geodp.2017.03.05.
    [34]Zheng C., Wang Q., Li P., 2016. Coupling SEBAL with a new radiation module and MODIS products for better estimation of evapotranspiration. Hydrol. Sci. J. 61, 1535–1547. https://doi.org/10.1080/02626667.2015.1031762.
    [35]Lu J., Jia L., Zheng C., Zhou J., van Hoek M., Wang K., 2016. Characteristics and trends of meteorological drought over China from remote sensing precipitation datasets, in: IGARSS 2016 - 2016 IEEE International Geoscience and Remote Sensing Symposium. pp. 7581–7584.
    [36]van Hoek M., Jia L., Zhou J., Zheng C., Menenti M., 2016. Early drought detection by spectral analysis of satellite time series of precipitation and Normalized Difference Vegetation Index (NDVI). Remote Sens. 8. https://doi.org/10.3390/rs8050422.
    [37]Zheng C., Jia L., Hu G., Lu J., Wang K., Li Z.L., 2016. Global Evapotranspiration Derived by ETMonitor Model based on Earth Observations, in: International Geoscience and Remote Sensing Symposium (IGARSS). pp. 222–225.
    [38]Zheng C., Jia L., 2016. Global rainfall interception loss derived from multi-source satellite earth observations, in: International Geoscience and Remote Sensing Symposium (IGARSS). pp. 3532–3534. https://doi.org/10.1109/IGARSS.2016.7729913.
    [39]Zheng C., Jia L., Hu G., Menenti M., Lu J., Zhou J., Wang K., Li Z., 2016. Assessment of Water Use in Pan-Eurasian and African Continents by ETMonitor with Multi-Source Satellite Data. J. Phys. Conf. Ser. 755. https://doi.org/10.1088/1742-6596/755/1/011001.
    [40]Menenti M., Jia L., Mousivand A., Hu G. C., Zheng C., Lu J. 2016. Evaluation of ET data products: Parameterizations, rate limiting process and influential surface properties. 2016 IEEE International Geoscience and Remote Sensing Symposium: 214-217. DOI: 10.1109/IGARSS.2016.7729047. 
    [41]Menenti M., Jia L., Hu G., Liu Q., Xin X., Roupioz L., Zheng C., et l., 2016. Terrestrial water cycle in South and East Asia: Hydrospheric and cryospheric data products. 2016 IEEE International Geoscience and Remote Sensing Symposium: 3814-3817. DOI: 10.1109/IGARSS.2016.7729989. 
    [42]Zheng C., Wang Q., 2015. Seasonal and annual variation in transpiration of a dominant desert species, Haloxylon ammodendron, in Central Asia up-scaled from sap flow measurement. Ecohydrology 8, 948–960. https://doi.org/10.1002/eco.1547.
    [43]Zheng C., Wang Q., 2015. Spatiotemporal pattern of the global sensitivity of the reference evapotranspiration to climatic variables in recent five decades over China. Stoch. Environ. Res. Risk Assess. 29, 1937–1947. https://doi.org/10.1007/s00477-015-1120-7.
    [44]Cao, Z., Wang Q., Zheng C., 2015. Best hyperspectral indices for tracing leaf water status as determined from leaf dehydration experiments. Ecol. Indic. 54, 96–107. https://doi.org/10.1016/j.ecolind.2015.02.027.
    [45]Zheng C., Wang Q., 2014. Spatiotemporal variations of reference evapotranspiration in recent five decades in the arid land of Northwestern China. Hydrol. Process. 28. https://doi.org/10.1002/hyp.10109.
    [46]Zheng C., Wang Q., 2014. Water-use response to climate factors at whole tree and branch scale for a dominant desert species in central Asia: Haloxylon ammodendron. Ecohydrology 7, 56–63. https://doi.org/10.1002/eco.1321.
    [47]Li N., Jia L., Zheng C., 2014. Evaluation of the harmonic-analysis method for surface soil heat flux estimation: a case study in Heihe River Basin, in: Land Surface Remote Sensing II. p. 926043. https://doi.org/10.1117/12.2069270.
    [48]周琪, 李平衡, 王權, 鄭超磊, 徐璐. 西北干旱區(qū)荒漠生態(tài)系統(tǒng)通量貢獻區(qū)模型研究. 中國沙漠, 2014, 31(1): 98-107.
    [49]賈立, 胡光成, 鄭超磊, 周杰, 王昆, 李占勝, 柳欽火. 中國-東盟1 km分辨率地表蒸散發(fā)數(shù)據(jù)集(2013), 全球變化數(shù)據(jù)學報, 2017, 1(3): 282-289. 
    [50]Shu C., Liu S.X, Mo X.G., Wang K., Zheng C.L., Zhang S.H. 2010. The Simulation of Hydrological Processes in an Ungauged Alpine Basin by using Xinanjiang Model(新安江模型在高寒無資料地區(qū)的水文過程模擬). Journal of Resources and Ecology, 1(2), 186-192. https://doi.org/10.3969/j.issn.1674-764x.2010.02.011.
    [51]鄭超磊, 劉蘇峽, 舒暢, 張守紅. 尼曲河道內最小生態(tài)需水研究. 長江流域資源與環(huán)境, 2010, 19: 329-334. 
    [52]鄭超磊, 劉蘇峽, 舒暢等. 基于生態(tài)需水的水資源供需平衡分析. 人民黃河, 2010, 32: 48-49. 
    [53]舒暢,劉蘇峽,莫興國,鄭超磊,張守紅,邱建秀. 基于變異性范圍法(RVA)的河流生態(tài)流量估算. 生態(tài)環(huán)境學報, 2010, 19(5):1151-1155. 
    [54]張守紅,劉蘇峽, 莫興國, 舒暢, 鄭超磊, 侯博. 降雨和水保措施對無定河流域徑流和產(chǎn)沙量影響. 北京林業(yè)大學學報, 2010, 32(4):161-168. 
    [55]劉蘇峽, 夏軍, 蔡強國, 王隨繼, 舒暢, 鄭超磊. 汶川特大地震災后山洪災害預估與應對措施. 中國水土保持科學, 2008, 6(5):7-10. 
     
    2.專著和報告(參與撰寫)
    (1)Jia L., Zheng C., Hu G.C., Menenti M., 2018. Evapotranspiration, in: Comprehensive Remote Sensing. pp. 25–50. https://doi.org/10.1016/B978-0-12-409548-9.10353-7.(專著章節(jié))
    (2)賈立, 鄭超磊, 等. 陸表能量與水分交換過程的遙感觀測與模擬》第7章陸表蒸散發(fā)遙感, 科學出版社, 2023,ISBN 978-7-03-074897-3. (專著章節(jié))
    (3)《地球觀測優(yōu)秀應用百佳案例》,“ETMonitor蒸散發(fā)數(shù)據(jù)助力“一帶一路”區(qū)域水資源監(jiān)測”案例,中國GEO, 2022. 
    (4)《地球大數(shù)據(jù)支撐可持續(xù)發(fā)展目標報告(2023)》,“SDG 6 清潔飲水和衛(wèi)生設施:全球農(nóng)田用水效率變化”案例, 中國科學院, 2023. 
    (5)《地球大數(shù)據(jù)支撐可持續(xù)發(fā)展目標報告(2022)》,“SDG 6 清潔飲水和衛(wèi)生設施:中國三大糧食作物水分利用效率變化評估”案例, 中國科學院, 2022. 
    (6)《地球大數(shù)據(jù)支撐可持續(xù)發(fā)展目標報告(2021)》,“SDG 6 清潔飲水和衛(wèi)生設施:全球農(nóng)作物水分利用效率變化評估”案例, 中國科學院, 2021.
    (7)《地球大數(shù)據(jù)支撐可持續(xù)發(fā)展目標報告(2020):“一帶一路”篇》,“摩洛哥作物水分生產(chǎn)力評估案例”, 科學出版社2021. 
    (8)遙感監(jiān)測綠皮書《中國可持續(xù)發(fā)展遙感監(jiān)測報告(2021)》, 社會科學文獻出版社, 2021. 
    (9)遙感監(jiān)測綠皮書《中國可持續(xù)發(fā)展遙感監(jiān)測報告(2019)》, 社會科學文獻出版社, 2020.
    (10)遙感監(jiān)測綠皮書《中國可持續(xù)發(fā)展遙感監(jiān)測報告(2017)》, 社會科學文獻出版社, 2018.
    (11)遙感監(jiān)測綠皮書《中國可持續(xù)發(fā)展遙感監(jiān)測報告(2016)》, 社會科學文獻出版社, 2017.
    (12)《全球生態(tài)環(huán)境遙感監(jiān)測2017年度報告—“一帶一路”生態(tài)環(huán)境狀況》, 國家科學技術部發(fā)布, 2018.
    (13)《全球生態(tài)環(huán)境遙感監(jiān)測2014年度報告—中國-東盟生態(tài)環(huán)境狀況》, 國家科學技術部發(fā)布, 2015.
     
     
    3.專利和軟著
    (1)鄭超磊. 2021. 基于風云衛(wèi)星遙感數(shù)據(jù)的陸表蒸散發(fā)估算軟件. 軟件著作權登記編號: 2021SR0638223. (軟件著作權)
    (2)鄭超磊., 賈立, 胡光成, 等. 2023. 基于國產(chǎn)高分一號衛(wèi)星遙感數(shù)據(jù)的陸表蒸散發(fā)估算軟件. 軟件著作權登記編號: 2023SR0348829. (軟件著作權)
    (3)賈立,鄭超磊,胡光成. 2021. 地表蒸散發(fā)量的確定方法及裝置. 專利申請?zhí)? 202110386815.8.(發(fā)明專利)
    (4)胡光成,賈立,鄭超磊,陳琪婷. 2023. 地表蒸散發(fā)量的確定方法及裝置. 專利申請?zhí)? 202311065046.7.(發(fā)明專利)
     
    4.發(fā)布數(shù)據(jù)集
    (1)鄭超磊,賈立,胡光成. 2023. 全球陸表蒸散發(fā)產(chǎn)品(2000-2021 年,1 公里分辨率)(ETMonitor-1km_2000-2021). 可持續(xù)發(fā)展大數(shù)據(jù)國際研究中心, DOI: 10.12237/casearth.640f012a819aec3f2b52a4b6. (入選贈送聯(lián)合國全球水資源數(shù)據(jù)產(chǎn)品 2023版)
    (2)鄭超磊, 賈立, 胡光成. 2022. ETMonitor全球1公里分辨率地表實際蒸散發(fā)數(shù)據(jù)集. 國家青藏高原科學數(shù)據(jù)中心, DOI:10.11888/RemoteSen.tpdc.272831. (入選2022年度優(yōu)秀共享開放遙感數(shù)據(jù)集十大最受歡迎年度數(shù)據(jù)集)
    (3)鄭超磊,賈立,胡光成. 2022. 2000-2019年全球1km地表實際蒸散發(fā). 地球大數(shù)據(jù)科學工程數(shù)據(jù)共享服務系統(tǒng), DOI: 10.12237/casearth.6253cddc819aec49731a4bc2. 
    (4)鄭超磊, 賈立, 趙天杰. 2022. 全球1公里分辨率地表土壤濕度數(shù)據(jù)集(2000-2020). 國家青藏高原科學數(shù)據(jù)中心, DOI: 10.11888/RemoteSen.tpdc.272760.
    (5)鄭超磊, 賈立, 胡光成. 2019. 全球陸表實際蒸散發(fā)數(shù)據(jù)集(2013-2014). 國家青藏高原科學數(shù)據(jù)中心, DOI: 10.11888/Hydro.tpdc.270298. 
    (6)胡光成, 賈立, 鄭超磊, 崔要奎. 2021. 中國黑河流域蒸散發(fā)日序列1-km柵格數(shù)據(jù)集(2000-2015). 全球變化數(shù)據(jù)倉儲電子雜志(中英文). DOI:10.3974/geodb.2021.10.07.V1.
    (7)胡光成, 周杰, 盧靜, 鄭超磊, 賈立等. 2020. 中國西南地區(qū)歷年月度干旱指數(shù)(1951-2016)和8 天頻率土壤濕度(2007-2016)數(shù)據(jù)集. 全球變化數(shù)據(jù)倉儲電子雜志(中英文). DOI: 10.3974/geodb.2020.04.17.V1.
    (8)趙天杰, 姚盼盼, 崔倩, 蔣玲梅, 柴琳娜, 鄭超磊, 盧麾, 等. 2021. 灤河上游地區(qū)土壤溫濕度地面同步觀測數(shù)據(jù)集(2018). 國家青藏高原科學數(shù)據(jù)中心, DOI: 10.11888/Soil.tpdc.271551. 
    (9)賈立, 鄭超磊, 胡光成, 周杰, 盧靜, 王昆. 2017. “一帶一路”及其毗鄰區(qū)域地表蒸散發(fā)數(shù)據(jù)集2015. 全球變化數(shù)據(jù)倉儲電子雜志(中英文). DOI:10.3974/geodb.2017.04.11.V1. 
    (10)賈立, 胡光成, 鄭超磊, 周 杰 ,王 昆 ,李占勝 ,柳欽火. 2017. 中國-東盟1 km分辨率地表蒸散發(fā)數(shù)據(jù)集(2013). 全球變化數(shù)據(jù)倉儲電子雜志(中英文). DOI: DOI:10.3974/geodb.2015.01.11.V1. (入選首屆優(yōu)秀共享開放遙感數(shù)據(jù)集“十大最具價值年度數(shù)據(jù)集”)