韩国亚洲伊人久久综合影院,日本在线观看公司入口视频,国产成人精品久久综合电影,久久极品免费视频

    首頁 > 科研隊伍 > 研究員/教授

研究員/教授

  • 姓名:柳欽火
  • 性別:
  • 專家類別:研究員
  • 所屬部門:遙感科學(xué)國家重點實驗室
  • 職務(wù):
  • 職稱:研究員
  • 社會任職:

    2018-,中國空間科學(xué)學(xué)會理事,空間地球系統(tǒng)科學(xué)專業(yè)委員會委員

    2018-, 中國地理學(xué)會大數(shù)據(jù)工作委員會副主任委員

    2012-, 中國地理學(xué)會第二屆學(xué)術(shù)工作委員會,副主任委員

    2010-,中國環(huán)境科學(xué)學(xué)會環(huán)境信息系統(tǒng)與遙感專業(yè)委員會第一屆委員會

    2009-2018, Member of IEEE Geoscience and Remote Sensing Society

    2018- IEEE,Senior Member of IEEE Geoscience and Remote Sensing Society

    2003-2017, 中國測繪學(xué)會第九、十、十一屆理事會攝影測量與遙感專業(yè)委員會副主任委員(2003-2006,2007-2010,2011-2014)

    2018-, 中國測繪地理信息學(xué)會第十二屆理事會攝影測量與遙感專業(yè)委員會副主任委員

    2003-2014, 全國氣象學(xué)會第25、26、27屆衛(wèi)星氣象與空間天氣學(xué)委員會委員

  • 電話:010-64849840
  • 傳真:010-64849840
  • 電子郵件:liuqh@aircas.ac.cn
  • 個人網(wǎng)頁: 
  • 百人入選時間:
  • 杰青入選時間:
  • 通訊地址:北京市朝陽區(qū)大屯路甲20號(北)中國科學(xué)院空天信息創(chuàng)新研究院
  • 郵政編碼:100101

    簡歷

  • 柳欽火,男,中國科學(xué)院空天信息創(chuàng)新研究院二級研究員、博士生導(dǎo)師、中國科學(xué)院大學(xué)崗位教授、國家重點研發(fā)計劃項目負責(zé)人,中國遙感應(yīng)用協(xié)會定量遙感專業(yè)委員會主任、中國空間科學(xué)學(xué)會理事、空間地球科學(xué)專業(yè)委員會副主任、中國測繪學(xué)會攝影測量與遙感專業(yè)委員會副主任、中國地理學(xué)會大數(shù)據(jù)工作委員會副主任,亞洲大洋洲地球觀測組織(AOGEO)第七工作組(環(huán)境監(jiān)測與保護)組長、國際地球觀測組織(GEO)預(yù)研項目(GEOARC)聯(lián)合主席,Journal of Remote Sensing副主編、遙感學(xué)報副主編。獲西南交通大學(xué)學(xué)士學(xué)位(1988)、北京大學(xué)碩士學(xué)位(1994)、北京大學(xué)博士學(xué)位(1997),1999年中國科學(xué)院遙感應(yīng)用研究所博士后出站留所工作至今,2001年晉升研究員,曾任中國科學(xué)院遙感應(yīng)用研究所所長助理(2010.5-2012.9)、遙感科學(xué)國家重點實驗室副主任(2004.11-2018.10)/常務(wù)副主任(主持工作,2018.11-2023.10)、遙感輻射傳輸研究室主任(2007.1-2018.10)等職務(wù)。先后前往法國農(nóng)業(yè)科學(xué)院氣候與環(huán)境研究所(1998.3-1999.3)、美國波士頓大學(xué)地理系(1999.3-1999.6)、美國馬里蘭大學(xué)地理學(xué)(20045-2004.6)、美國喬治梅森大學(xué)地理系(2010.9-2010.12)、澳大利亞悉尼理工大學(xué)氣候變化研究中心(2014.6-2014.12)任(高級)訪問學(xué)者。

     

    工作經(jīng)歷:

    1988.7—1991.9,鐵道部隧道工程局,助理工程師

    1997.7—1999.7,中國科學(xué)院遙感應(yīng)用研究所,地圖學(xué)與遙感博士后。

    (期間:1998.12—1999.3,法國農(nóng)業(yè)科學(xué)院,訪問學(xué)者

    1999.3—1999.6,美國波士頓大學(xué)地理系,訪問學(xué)者)

    1999.7—2001.2,中國科學(xué)院遙感應(yīng)用研究所,遙感信息科學(xué)重點實驗室,副研究員

    2001.2—2003.1,中國科學(xué)院遙感應(yīng)用研究所,遙感信息科學(xué)重點實驗室,研究員

    2003.1—2004.11,中國科學(xué)院遙感應(yīng)用研究所,遙感信息科學(xué)重點實驗室,副主任、研究員

    2004.11—2007.1,中國科學(xué)院遙感應(yīng)用研究所,遙感科學(xué)國家重點實驗室,副主任、研究員

    (期間:2004.5—2004.6,美國馬里蘭大學(xué)地理學(xué),高級訪問學(xué)者)

    2007.1—2010.5,中國科學(xué)院遙感應(yīng)用研究所,遙感科學(xué)國家重點實驗室(常務(wù))副主任,遙感輻射傳輸研究室主任、研究員

    (期間: 2010.9—2010.12,美國喬治梅森大學(xué)地理系,高級訪問學(xué)者)

    2010.5—2012.9,中國科學(xué)院遙感應(yīng)用研究所所長助理、黨委委員,遙感科學(xué)國家重點實驗室副主任,遙感輻射傳輸研究室主任、研究員

    2012.9—2018.11,中國科學(xué)院遙感與數(shù)字地球研究所,遙感科學(xué)國家重點實驗室副主任,遙感輻射傳輸研究室主任、研究員

    (期間:2014.6-2014.12,澳大利亞悉尼理工大學(xué),高級訪問學(xué)者)

    2018.12.12—2023.10,中國科學(xué)院空天信息創(chuàng)新研究院,遙感科學(xué)國家重點實驗室常務(wù)副主任,研究員

    2023.11—至今,中國科學(xué)院空天信息創(chuàng)新研究院,遙感衛(wèi)星應(yīng)用國家工程研究中心,研究員

     

    研究方向

  • 主要研究方向為定量遙感建模、反演與應(yīng)用,主持了國家重點研發(fā)計劃項目、國家自然科學(xué)基金重點項目、國家高分重大專項項目、973項目課題、863重大項目課題、國家科技支撐計劃重點項目課題、以及中科院重點部署項目等科研任務(wù),在國內(nèi)外學(xué)術(shù)期刊發(fā)表學(xué)術(shù)論文500余篇,其中SCI收錄論文200余篇,SCI引用6000余次,出版專著14部,授權(quán)發(fā)明專利24項,編制國家標準7項。2018年獲國務(wù)院政府特殊津貼,獲國家科學(xué)技術(shù)進步二等獎(2016)、山東省科學(xué)技術(shù)進步一等獎(2023)、北京市科技進步二等獎(2022、2021)、中國測繪學(xué)會科技進步一等獎(2021、2018)、北京市科技進步一等獎(2013)、廣東省科技進步二等獎(2014)、上海市科技進步二等獎(2002)等多項科技獎勵。

    代表性成果:(1)主持研發(fā)了全鏈路國產(chǎn)衛(wèi)星光學(xué)遙感圖像仿真模擬系統(tǒng):突破了復(fù)雜地表空間異質(zhì)性表征與多次散射求解的理論難題,創(chuàng)建了混合像元、山地二向性反射及熱輻射方向性系列模型;攻克了耦合地表方向性模型的多角度遙感成像模擬技術(shù),研建了業(yè)務(wù)化運行的全鏈路國產(chǎn)衛(wèi)星光學(xué)遙感圖像仿真模擬系統(tǒng),有效支撐了我國環(huán)境減災(zāi)衛(wèi)星、中巴資源衛(wèi)星和高分重大專項等衛(wèi)星20余個光學(xué)和紅外載荷指標的自主設(shè)計論證和地面系統(tǒng)建設(shè)。(2)主持研發(fā)了多源協(xié)同定量遙感產(chǎn)品生成系統(tǒng):針對國產(chǎn)遙感衛(wèi)星定量應(yīng)用不足、遙感數(shù)據(jù)源面臨卡脖子的風(fēng)險,創(chuàng)建了多源協(xié)同定量遙感共性產(chǎn)品生成技術(shù)體系,攻克了多源遙感數(shù)據(jù)幾何歸一化、高頻次交叉定標與高精度大氣校正等關(guān)鍵技術(shù);突破了復(fù)雜地表條件下地表參量多星協(xié)同反演等核心技術(shù),研建了國產(chǎn)衛(wèi)星為主要數(shù)據(jù)源的多源協(xié)同定量遙感產(chǎn)品生成系統(tǒng),具備公里、百米和十米級多尺度遙感數(shù)據(jù)歸一化處理和40余種定量遙感產(chǎn)品自動化與規(guī)?;瘶I(yè)務(wù)生產(chǎn)能力,成果在農(nóng)業(yè)部、水利部、環(huán)境保護部、自然資源部等行業(yè)領(lǐng)域推廣應(yīng)用,顯著提升了定量遙感在國民經(jīng)濟各行業(yè)的應(yīng)用水平。(3)主持研發(fā)了高分共性遙感產(chǎn)品真實性檢驗平臺與產(chǎn)品定型分系統(tǒng):開展了高分衛(wèi)星遙感共性產(chǎn)品生成、高分遙感共性產(chǎn)品測評與產(chǎn)品真實性檢驗等關(guān)鍵技術(shù)攻關(guān),研發(fā)了業(yè)務(wù)化運行的高分共性遙感產(chǎn)品真實性檢驗平臺與產(chǎn)品定型分系統(tǒng),具備了野外臺站觀測規(guī)劃-觀測數(shù)據(jù)匯聚-遙感算法測評-共性產(chǎn)品生產(chǎn)-真實性檢驗的一站式共享服務(wù)能力,形成了遙感產(chǎn)品真實性檢驗的系列國家標準,有效提升了高分辨率對地觀測重大專項遙感定量化應(yīng)用效益。(4)主持編制了全球生態(tài)環(huán)境遙感監(jiān)測系列報告:主持了科技部在GEO全會發(fā)布的《中國東盟區(qū)域生態(tài)環(huán)境狀況》、《“一帶一路”生態(tài)環(huán)境狀況》、《全球陸域生態(tài)系統(tǒng)可持續(xù)發(fā)展態(tài)勢》等全球生態(tài)環(huán)境遙感監(jiān)測報告,被中央電視臺、人民日報等多家媒體廣泛報道,為全球生態(tài)環(huán)境保護、資源合理利用、政府決策和國際合作提供了有效支撐。

    承擔(dān)科研項目情況

  • (1)2023.12-2027.11,國家重點研發(fā)計劃項目,生態(tài)系統(tǒng)結(jié)構(gòu)與過程關(guān)鍵參數(shù)反演與三維實景重建技術(shù)(2023YFF1303600),項目負責(zé)人。
    (2)2019.1-2021.12,空天院自主部署項目“國產(chǎn)遙感衛(wèi)星共性定量遙感產(chǎn)品生成技術(shù)與運行系統(tǒng)”,項目負責(zé)人。
    (3)2020.1-2024.12,國家自然科學(xué)重點基金項目,復(fù)雜地表輻射收支虛擬星座多角度遙感監(jiān)測機理研究(41930111),項目負責(zé)人。
    (4)2018.7-2021.6,國家重點研發(fā)計劃項目,基于國產(chǎn)衛(wèi)星數(shù)據(jù)的全球變化關(guān)鍵數(shù)據(jù)研制(2018YFA0605500),項目負責(zé)人。
    (5)2017.5-2019.4,中國科學(xué)院重點部署項目,“瀾湄流域重大蟲媒孳生環(huán)境遙感監(jiān)測與服務(wù)”(KFZD-SW-316),項目負責(zé)人。
    (6)2013-2017,國家重大基礎(chǔ)研究規(guī)劃項目(973計劃)“復(fù)雜地表遙感動態(tài)分析與建?!保谝徽n題,復(fù)雜地表遙感輻散射機理及動態(tài)建模(2013CB733401),課題負責(zé)人。
    (7)2012-2015,國家863計劃重大項目“ 星機地綜合定量遙感系統(tǒng)與應(yīng)用示范(一期)”,第四課題:多尺度遙感數(shù)據(jù)按需快速處理與定量遙感產(chǎn)品生成關(guān)鍵技術(shù)(SS2012AA120904),課題負責(zé)人。
    (8)2012-2015,中國科學(xué)院西部行動計劃項目“黑河流域生態(tài)-水文遙感產(chǎn)品生產(chǎn)與應(yīng)用試驗研究”,第二課題“黑河流域生態(tài)過程關(guān)鍵參量遙感產(chǎn)品(KZCX2-XB3-05-02)”,課題負責(zé)人。
    (9)2012-2016,中國科學(xué)院創(chuàng)新團隊國際合作伙伴計劃項目“衛(wèi)星遙感在能量與水循環(huán)監(jiān)測中的機理研究與應(yīng)用”,課題“光學(xué)前向模擬模型與地表輻射平衡” ,課題負責(zé)人。
    (10)2008-2011,國家自然科學(xué)基金重點項目,光學(xué)與微波遙感的模型協(xié)同及聯(lián)合反演研究(40730525),項目負責(zé)人。
    (11)2007-2010,國家科技支撐項目“基于環(huán)境一號等國產(chǎn)衛(wèi)星的環(huán)境遙感監(jiān)測關(guān)鍵技術(shù)及軟件研究”,第三課題:面向環(huán)境監(jiān)測的多源遙感數(shù)據(jù)協(xié)同反演與同化技術(shù)及軟件研發(fā)研究(2008BAC34B03),課題負責(zé)人。
    (12)2007-2010,中科院知識創(chuàng)新工程重要方向項目,多源遙感數(shù)據(jù)協(xié)同反演與信息融合關(guān)鍵技術(shù)(KZCX2-YW-313),項目負責(zé)人。
    (13)2009-2010年,中國資源衛(wèi)星中心項目:全國陸地觀測衛(wèi)星數(shù)據(jù)處理和服務(wù)設(shè)施建設(shè)項目—CBERS-03/04星全色、多光譜,紅外,WFI,MUX相機數(shù)據(jù)模擬軟件包;
    (14)2007-2009,國家自然科學(xué)基金面上項目,混合像元熱紅外輻射方向性模型及其時空尺度效應(yīng)(40671139),項目負責(zé)人。
    (15)2003-2006,中科院知識創(chuàng)新工程重要方向項目,定量遙感應(yīng)用的幾個關(guān)鍵問題研究,第二課題:遙感估產(chǎn)運行系統(tǒng)中遙感監(jiān)測過程檢驗與精度評估(KZCX3-SW-338-2),課題負責(zé)人。
    (16)2000-2005, 973項目, 地球表面時空多變要素的定量遙感理論及應(yīng)用, 第三課題:地球表面時空多變要素的遙感綜合反演研究(G2000077903),課題負責(zé)人。
    (17)2001-2004, 863項目, 全國典型地物光譜數(shù)據(jù)庫,第二課題:全國典型農(nóng)作物光譜數(shù)據(jù)子庫及其應(yīng)用示范(2002AA130010-2),課題負責(zé)人。
    (18)2004-2006,國家自然科學(xué)基金面上項目,植被組分溫度分布特征及其時空尺度效應(yīng)研究(40371087),項目負責(zé)人。
    (19)2001-2003, 國家科技部, 863項目, 對地觀測數(shù)據(jù)處理原型系統(tǒng)關(guān)鍵技術(shù),第三子課題:地表參數(shù)遙感綜合反演技術(shù)(2001AA135050-3),子課題負責(zé)人。
    (20)1997-2000, 國家科技部, 95攀登預(yù)選項目,地球表面能量交換的遙感定量研究(95-預(yù)-38)主要研究骨干。

    獲獎及榮譽

  • (1)2023,多源遙感高精度信息提取關(guān)鍵技術(shù)與應(yīng)用,山東省科技進步一等獎。

    (2)2022,國產(chǎn)高分十米級分析即用數(shù)據(jù)集生成技術(shù)及其應(yīng)用,北京市科技進步二等獎二等獎

    (3)2021,復(fù)雜地表定量遙感建模及航天遙感應(yīng)用,北京市科技進步二等獎

    (4)2021,多源協(xié)同定量遙感產(chǎn)品生成關(guān)鍵技術(shù)與應(yīng)用,測繪科技進步一等獎。

    (5)2018,國務(wù)院政府特殊津貼。

    (6)2018,定量遙感產(chǎn)品的真實性檢驗標準與技術(shù)體系,測繪科技進步一等獎。

    (7)2016,國產(chǎn)陸地衛(wèi)星定量遙感關(guān)鍵技術(shù)及應(yīng)用,國家科技進步二等獎

    (8)2014,基于地物波譜的地表信息獲取方法與應(yīng)用,廣東省科技進步獎二等獎。

    (9)2013年,面向應(yīng)用的航天遙感軟硬一體化仿真系統(tǒng)技術(shù)與應(yīng)用示范,北京市科學(xué)技術(shù)進步獎一等獎。

    (10)2013,基于地物波譜的地表信息獲取方法與應(yīng)用,地理信息科技進步三等獎

    (11)2002,分光偏振計,上海市科技進步二等獎。

    代表性成果

  • 1.學(xué)術(shù)論文
    [1] Han, Y., Wen,J.G*., Xiao, Q., Wu, X.D., You, D.Q., Tang, Y., Gong, B.C., Zhang, H.L.,Liu, Q.H., Zhu, W.Z., & Chen, Z.Q. (2024). Characterizing the effects ofatmospheric and land surface factors on the diurnal variation of land surfacealbedo (DVLSA) over vegetated surfaces. Solar Energy, 270, 14, https://doi.org/10.1016/j.solener.2024.112386
    [2] Li, T.C.,Xin, X.Z*., Zhang, H.L., Yu, S.S., Li, L., Ye, Z.Q., Liu, Q.H., &Cai, H. (2024). Evaluation of Six Data Products of Surface Downward ShortwaveRadiation in Tibetan Plateau Region. Remote Sensing, 16, 19, https://doi.org/10.3390/rs16050791
    [3] Bian, Z.J*., Fan, T.Y., Roujean, J.L., Wang, D.D.,Irvine, M., Wu, S.B., Cao, B., Li, H*., Du, Y.M., Xiao, Q., & Liu,Q.H. (2024). An analytical urban temperature model with building heterogeneityusing geometric optical theory. Remote Sensing of Environment, 301, 16, https://doi.org/10.1016/j.rse.2023.113948
    [4] Chu,T.J., Li, J*., Zhao, J., Gu, C.P., Mumtaz, F., Dong, Y.D., Zhang, H.,& Liu, Q.H. (2024). Regional Analysis of Dominant Factors Influencing LeafChlorophyll Content in Complex Terrain Regions Using a Geographic StatisticalModel. Remote Sensing, 16, 16, https://doi.org/10.3390/rs16030479 
    [5] He, M., Wen,J.G*., Wu, S.B., Meng, L., Lin, X.W., Han, Y., You, D.Q., Tang, Y., &Liu, Q.H. (2024). A New Forest Leaf Area Index Retrieval Algorithm Over SlopeSurface. Ieee Transactions on Geoscience and Remote Sensing, 62,18,https://doi.org/10.1109/tgrs.2023.3343876 
    [6] Hu, T*., Roujean, J.L., Cao, B., Mallick, K.,Boulet, G., Li, H., Xu, Z.H., Du, Y.M., & Liu, Q.H. (2023). Correction forLST directionality impact on the estimation of surface upwelling longwaveradiation over vegetated surfaces at the satellite scale. Remote Sensing ofEnvironment, 295, 22, https://doi.org/10.1016/j.rse.2023.113649 
    [7] Liu, C., Li,J*., Liu, Q.H., Gao, J.X., Mumtaz, F., Dong, Y.D., Wang, C., Gu, C.P.,& Zhao, J. (2023). Combined influence of ENSO and North AtlanticOscillation (NAO) on Eurasian Steppe during 1982-2018. Science of the TotalEnvironment, 892, 12, https://doi.org/10.1016/j.scitotenv.2023.164735 
    [8] Sun,G.Y., Li, Z., Zhang, A.Z., Wang, X., Yan, K*., Jia, X.P., Liu, Q.H.,& Li, J*. (2023). A 10-m resolution impervious surface area map forthe greater Mekong subregion from remote sensing images. Scientific Data, 10,9, https://doi.org/10.1038/s41597-023-02518-z 
    [9] Zhao, J.,Li, J*., Liu, Q.H., Dong, Y.D., Li, L., & Zhang, H. (2023).Assessment of Forest Ecosystem Variations in the Lancang-Mekong Region byRemote Sensing from 2010 to 2020. Sensors, 23, 17, https://doi.org/10.3390/s23229038
    [10] Liu, C., Li,J*., Liu, Q.H., Xu, B.D., Dong, Y.D., Zhao, J., Mumtaz, F., Gu, C.P., &Zhang, H. (2023). Global Comparison of Leaf Area Index Products overWater-Vegetation Mixed Heterogeneous Surface Network (HESNet-WV). RemoteSensing, 15, 21, https://doi.org/10.3390/rs15051337 
    [11] Wen,J.G., Wu, X.D*., Xiao, Q*., Liu, Q.H., Ma, M.G., Zheng, X.M., Qu,Y.H., Jin, R., You, D.Q., Tang, Y., Lin, X.W., Yu, W.P., Gong, B.C., Yang, J.,& Han, Y. (2023). Full-band, multi-angle, multi-scale, and temporal dynamicfield spectral measurements in China. Scientific Data, 10, 17, https://doi.org/10.1038/s41597-023-02265-1
    [12] Bian, Z.J*., Roujean, J.L., Fan, T.Y., Dong, Y.D., Hu,T., Cao, B., Li, H., Du, Y.M*., Xiao, Q., & Liu, Q.H*.(2023). An angular normalization method for temperature vegetation drynessindex (TVDI) in monitoring agricultural drought. Remote Sensing of Environment,284, 17, https://doi.org/10.1016/j.rse.2022.113330 
    [13] Mumtaz,F., Li, J*., Liu, Q.H., Tariq, A., Arshad, A., Dong, Y.D., Zhao, J.,Bashir, B., Zhang, H., Gu, C.P., & Liu, C. (2023). Impacts of GreenFraction Changes on Surface Temperature and Carbon Emissions: Comparison underForestation and Urbanization Reshaping Scenarios. Remote Sensing, 15, 24, https://doi.org/10.3390/rs15030859
    [14] Cai, H., Zhong,B*., Liu, H.L., Du, B.L., Liu, Q.H., Wu, S.L., Li, L., Yang, A.X., Wu,J.J., Gu, X.F., & Jiang, J.X. (2023). An improved deep learning network forAOD retrieving from remote sensing imagery focusing on sub-pixel cloud.Giscience & Remote Sensing, 60, 25, https://doi.org/10.1080/15481603.2023.2262836
    [15] Gu, C.P.,Li, J*., Liu, Q.H*., Zhang, H., Liu, L.Y., Mumtaz, F., Dong, Y.D., Zhao,J., Wang, X.H., & Liu, C. (2023). Retrieving decametric-resolution leafchlorophyll content from GF-6 WFV by assessing the applicability of red-edgevegetation indices. Computers and Electronics in Agriculture, 215, 14, https://doi.org/10.1016/j.compag.2023.108455
    [16] Mumtaz, F*., Li, J*., Liu, Q.H*., Arshad,A., Dong, Y.D., Liu, C., Zhao, J., Bashir, B., Gu, C.P., Wang, X.H., &Zhang, H. (2023). Spatio-temporal dynamics of land use transitions associatedwith human activities over Eurasian Steppe: Evidence from improved residualanalysis. Science of the Total Environment, 905,16,https://doi.org/10.1016/j.scitotenv.2023.166940 
    [17] Wu, J.J.,Li, Y., Zhong, B*., Liu, Q.H., Wu, S.L., Ji, C.Y., Zhao, J., Li, L.,Shi, X.L., & Yang, A.X. (2023). Integrated vegetation cover of typicalsteppe in China based on mixed decomposing derived from high resolution remotesensing data. Science of the Total Environment, 904,16,https://doi.org/10.1016/j.scitotenv.2023.166738 
    [18] Yu, S.S.,Xin, X.Z*., Zhang, H.L., Li, L., Zhu, L., & Liu, Q.H. (2023). ACloud Water Path-Based Model for Cloudy-Sky Downward Longwave RadiationEstimation from FY-4A Data. Remote Sensing, 15,20,https://doi.org/10.3390/rs15235531 
    [19] Zhao, J.,Li, J., Liu, Q.H*., Xu, B.D., Mu, X.H., & Dong, Y.D. (2023).Generation of a 16 m/10-day fractional vegetation cover product over Chinabased on Chinese GaoFen-1 observations: method and validation. InternationalJournal of Digital Earth, 16, 4229-4246, https://doi.org/10.1080/17538947.2023.2264815
    [20] Qin,B.X., Cao, B*., Roujean, J.L., Gastellu-Etchegorry, J.P., Ermida, S.L.,Bian, Z.J., Du, Y.M., Hu, T., Li, H., Xiao, Q., Chen, S.S., & Liu, Q.H.(2023). A thermal radiation directionality correction method for the surfaceupward longwave radiation of geostationary satellite based on a time-evolvingkernel-driven model. Remote Sensing of Environment, 294,23,https://doi.org/10.1016/j.rse.2023.113599 
    [21] Chen, Y.,Weng, Q.H., Tang, L.L*., Wang, L., Xing, H.F., & Liu, Q.H. (2023).Developing an intelligent cloud attention network to support global urban greenspaces mapping. Isprs Journal of Photogrammetry and Remote Sensing, 198,197-209,https://doi.org/10.1016/j.isprsjprs.2023.03.005 
    [22] Cao, B.,Gastellu-Etchegorry, J.P., Yin, T.G., Bian, Z.J., Bai, J.H., Fang, J.Y., Qin,B.X., Du, Y.M*., Li, H., Xiao, Q., & Liu, Q.H. (2023). Optimizingthe Protocol of Near-Surface Remote Sensing Experiments Over HeterogeneousCanopy Using DART Simulated Images. Ieee Transactions on Geoscience and RemoteSensing, 61, 16, https://doi.org/10.1109/tgrs.2023.3239423 
    [23] Dong,Y.D., Li, J*., Jiao, Z.T., Liu, Q.H., Zhao, J., Xu, B.D., Zhang, H.,Zhang, Z.X., Liu, C., Knyazikhin, Y., & Myneni, R.B. (2023). A Method forRetrieving Coarse-Resolution Leaf Area Index for Mixed Biomes Using aMixed-Pixel Correction Factor. Ieee Transactions on Geoscience and Remote Sensing,61, 17,https://doi.org/10.1109/tgrs.2023.3235949 
    [24] Li, H.,Li, R.B., Tu, H., Cao, B*., Liu, F.J., Bian, Z.J., Hu, T., Du, Y.M.,Sun, L., & Liu, Q.H. (2023). An Operational Split-Window Algorithm forGenerating Long-Term Land Surface Temperature Products from Chinese Fengyun-3Series Satellite Data. Ieee Transactions on Geoscience and Remote Sensing, 61,14, https://doi.org/10.1109/tgrs.2023.3315968 
    [25] Li, R.B.,Li, H*., Hu, T., Bian, Z.J., Liu, F.J., Cao, B., Du, Y.M., Sun, L.,& Liu, Q.H. (2023). Land Surface Temperature Retrieval from Sentinel-3ASLSTR Data: Comparison Among Split-Window, Dual-Window, Three-Channel, andDual-Angle Algorithms. Ieee Transactions on Geoscience and Remote Sensing, 61,14, https://doi.org/10.1109/tgrs.2023.3288584 
    [26] Yu, S.S*., Li, L., Cao, B., Zhang, H.L., Zhu, L., Xin,X.Z*., & Liu, Q.H. (2022). Surface downward longwave radiationestimation from new generation geostationary satellite data. AtmosphericResearch, 276, 20, https://doi.org/10.1016/j.atmosres.2022.106255 
    [27] Li, Y., Wu,J.J*., Zhong, B., Shi, X.L., Xu, K.P., Ao, K., Sun, B., Ding, X.Y., Wang,X.S., Liu, Q.H., Yang, A.X., Chen, F., & Shi, M.Q. (2022). Methods of SandyLand Detection in a Sparse-Vegetation Scene Based on the Fusion of HJ-2AHyperspectral and GF-3 SAR Data. Remote Sensing, 14, 20, https://doi.org/10.3390/rs14051203
    [28] Bian,Z.J., Lu, Y.F., Du, Y.M., Zhao, W., Cao, B.A., Hu, T., Li, R.B., Li, H*.,Xiao, Q., & Liu, Q.H. (2022). Comparison between Physical and EmpiricalMethods for Simulating Surface Brightness Temperature Time Series. RemoteSensing, 14, 24, https://doi.org/10.3390/rs14143385 
    [29] Bian, Z.J*., Wu, S.B., Roujean, J.L., Cao, B*.,Li, H., Yin, G.F., Du, Y.M., Xiao, Q., & Liu, Q.H. (2022). A TIR forestreflectance and transmittance (FRT) model for directional temperatures withstructural and thermal stratification. Remote Sensing of Environment, 268, 16, https://doi.org/10.1016/j.rse.2021.112749
    [30] Cheng,J., Wen, J.G*., Xiao, Q., Wu, S.B., Hao, D.L., & Liu, Q.H. (2022).Extending the GOSAILT Model to Simulate Sparse Woodland Bi-DirectionalReflectance with Soil Reflectance Anisotropy Consideration. Remote Sensing, 14,21, https://doi.org/10.3390/rs14041001 
    [31] Wang, C.,Li, J*., Liu, Q.H., Huete, A., Li, L.H., Dong, Y.D., & Zhao, J.(2022). Eastern-Pacific and Central-Pacific Types of ENSO Elicit DiverseResponses of Vegetation in the West Pacific Region. Geophysical ResearchLetters, 49, 10, https://doi.org/10.1029/2021gl096666 
    [32] Lin,X.W., Wu, S.B*., Chen, B., Lin, Z.Y., Yan, Z.B., Chen, X.Z., Yin, G.F.,You, D.Q., Wen, J.G., Liu, Q., Xiao, Q., Liu, Q.H., & Lafortezza, R.(2022). Estimating 10-m land surface albedo from Sentinel-2 satelliteobservations using a direct estimation approach with Google Earth Engine. IsprsJournal of Photogrammetry and Remote Sensing, 194, 1-20, https://doi.org/10.1016/j.isprsjprs.2022.09.016
    [33] Zhang,H., Li, J*., Liu, Q.H., Lin, S.R., Huete, A., Liu, L.Y., Croft, H.,Clevers, J., Zeng, Y.L., Wang, X.H., Gu, C.P., Zhang, Z.X., Zhao, J., Dong,Y.D., Mumtaz, F., & Yu, W.T. (2022). A novel red-edge spectral index forretrieving the leaf chlorophyll content. Methods in Ecology and Evolution, 13,2771-2787, https://doi.org/10.1111/2041-210x.13994 
    [34] Bian,Z.J., Qi, J.B., Gastellu-Etchegorry, J.P., Roujean, J.L., Cao, B., Li, H., Du,Y.M., Xiao, Q*., & Liu, Q.H. (2022). A GPU-Based Solution for RayTracing 3-D Radiative Transfer Model for Optical and Thermal Images. IeeeGeoscience and Remote Sensing Letters, 19, 5, https://doi.org/10.1109/lgrs.2022.3206312
    [35] Chen, Y.,Weng, Q.H*., Tang, L.L*., Liu, Q.H., & Fan, R.S. (2022). AnAutomatic Cloud Detection Neural Network for High-Resolution Remote SensingImagery with Cloud-Snow Coexistence. Ieee Geoscience and Remote SensingLetters, 19, 5, https://doi.org/10.1109/lgrs.2021.3102970 
    [36] Cheng,J., Wen, J.G*., Xiao, Q., Hao, D.L., Lin, X.W., & Liu, Q.H. (2022).Exploring the Applicability of the Semi-Empirical BRDF Models at DifferentScales Using Airborne Multi-Angular Observations. Ieee Geoscience and RemoteSensing Letters, 19, 5, https://doi.org/10.1109/lgrs.2021.3135046 
    [37] Jia, C., Sun,L*., Chen, Y.F., Liu, Q.H., Yu, H.Y., & Zhang, W.H. (2022). SatelliteAerosol Retrieval Using Scene Simulation and Deep Belief Network. IeeeTransactions on Geoscience and Remote Sensing, 60, 16, https://doi.org/10.1109/tgrs.2021.3116154
    [38] Lin,X.W., Wu, S.B.*., Hao, D.L., Wen, J.G*., Xiao, Q., & Liu,Q.H. (2022). Sloping Surface Reflectance: The Best Option for Satellite-BasedAlbedo Retrieval Over Mountainous Areas. Ieee Geoscience and Remote SensingLetters, 19, 5, https://doi.org/10.1109/lgrs.2021.3069637 
    [39] Ran,X.T., Cao, B*., Qin, B.X., Bian, Z.J., Du, Y.M., Li, H., Xiao, Q., &Liu, Q.H*. (2022). Assessment of Five Thermal Infrared Kernel-DrivenModels Using Limited Multiangle Observations. Ieee Geoscience and RemoteSensing Letters, 19, 5, https://doi.org/10.1109/lgrs.2021.3078647 
    [40] Wen,J.G., Lin, X.W*., Wu, X.D., Bao, Y.F., You, D.Q., Gong, B.C., Tang, Y.,Wu, S.B., Xiao, Q., & Liu, Q.H. (2022). Validation of the MCD43A3Collection 6 and GLASS VO4 Snow-Free Albedo Products Over Rugged Terrain. IeeeTransactions on Geoscience and Remote Sensing, 60, 11, https://doi.org/10.1109/tgrs.2022.3214103
    [41] Wen,J.G., You, D.Q*., Han, Y., Lin, X.W., Wu, S.B.A., Tang, Y., Xiao, Q.,& Liu, Q.H. (2022). Estimating Surface BRDF/Albedo Over Rugged TerrainUsing an Extended Multisensor Combined BRDF Inversion (EMCBI) Model. IeeeGeoscience and Remote Sensing Letters, 19, 5, https://doi.org/10.1109/lgrs.2022.3143197
    [42] Yu, W.T.,Li, J*., Liu, Q.H., Zhao, J., Dong, Y.D., Wang, C., Lin, S.R., Zhu,X.R., & Zhang, H. (2022). Spatial-Temporal Prediction of Vegetation Index withDeep Recurrent Neural Networks. Ieee Geoscience and Remote Sensing Letters, 19,5, https://doi.org/10.1109/lgrs.2021.3064814 
    [43] Zhao, J.,Li, J*., Liu, Q.H., Zhang, Z.X., & Dong, Y.D. (2022). ComparativeStudy of Fractional Vegetation Cover Estimation Methods Based on Fine SpatialResolution Images for Three Vegetation Types. Ieee Geoscience and RemoteSensing Letters, 19, 5, https://doi.org/10.1109/lgrs.2022.3222018 
    [44] Zhu,X.R., Li, J*., Liu, Q.H., Yu, W.T., Li, S.Z., Zhao, J., Dong, Y.D.,Zhang, Z.X., Zhang, H., & Lin, S.R. (2022). Use of a BP Neural Network andMeteorological Data for Generating Spatiotemporally Continuous LAI Time Series.Ieee Transactions on Geoscience and Remote Sensing, 60, 14, https://doi.org/10.1109/tgrs.2021.3095535 
    [45] Cao,B.A., Qi, J.B., Chen, E.X., Xiao, Q., Liu, Q.H*., & Li, Z.Y. (2021).Fine scale optical remote sensing experiment of mixed stand over complexterrain (FOREST) in the Genhe Reserve Area: objective, observation and a casestudy. International Journal of Digital Earth, 14, 1411-1432, https://doi.org/10.1080/17538947.2021.1968047
    [46] Chen, Y.,Weng, Q.H*., Tang, L.L*., Liu, Q.H., Zhang, X., & Bilal, M. (2021).Automatic mapping of urban green spaces using a geospatial neural network.Giscience & Remote Sensing, 58, 624-642, https://doi.org/10.1080/15481603.2021.1933367
    [47] Zhong,B., Yang, A.X*., Liu, Q.H., Wu, S.L., Shan, X.J., Mu, X.H., Hu, L.F.,& Wu, J.J. (2021). Analysis Ready Data of the Chinese GaoFen SatelliteData. Remote Sensing, 13, 16, https://doi.org/10.3390/rs13091709 
    [48] Bian,Z.J., Cao, B.A., Li, H., Du, Y.M*., Fan, W.J., Xiao, Q., & Liu, Q.H.(2021). The Effects of Tree Trunks on the Directional Emissivity and BrightnessTemperatures of a Leaf-Off Forest Using a Geometric Optical Model. IeeeTransactions on Geoscience and Remote Sensing, 59, 5370-5386, https://doi.org/10.1109/tgrs.2020.3011157
    [49] Lin,S.R., Coops, N.C*., Tortini, R., Jia, W., Nesic, Z., Beamesderfer, E.,Arain, M.A., Li, J., & Liu, Q.H. (2021). Species and stand-age drivendifferences in photochemical reflectance index and light use efficiency acrossfour temperate forests. International Journal of Applied Earth Observation andGeoinformation, 98, 16, https://doi.org/10.1016/j.jag.2021.102308 
    [50] Zhang,H.L*., Dong, X.Q., Xi, B.K., Xin, X.Z*.,Liu, Q.H., He, H.M., Xie, X.P., Li, L., & Yu, S.S. (2021). Retrieving high-resolutionsurface photosynthetically active radiation from the MODIS and GOES-16 ABIdata. Remote Sensing of Environment, 260, 15, https://doi.org/10.1016/j.rse.2021.112436
    [51] Bian,Z.J., Roujean, J.L., Cao, B.A., Du, Y.M*., Li, H., Gamet, P., Fang, J.Y.,Xiao, Q., & Liu, Q.H. (2021). Modeling the directional anisotropy offine-scale TIR emissions over tree and crop canopies based on UAV measurements.Remote Sensing of Environment, 252, 16, https://doi.org/10.1016/j.rse.2020.112150
    [52] Cao, B.,Roujean, J.L., Gastellu-Etchegorry, J.P., Liu, Q.H., Du, Y.M*.,Lagouarde, J.P., Huange, H.G., Li, H., Bian, Z.J., Hu, T., Qin, B.X., Ran,X.T., & Xiao, Q. (2021). A general framework of kernel-driven modeling inthe thermal infrared domain. Remote Sensing of Environment, 252, 26, https://doi.org/10.1016/j.rse.2020.112157
    [53] Li, H.,Li, R.B., Yang, Y.K., Cao, B., Bian, Z.J., Hu, T., Du, Y.M*., Sun, L.,& Liu, Q.H. (2021). Temperature-Based and Radiance-Based Validation of theCollection 6 MYD11 and MYD21 Land Surface Temperature Products Over BarrenSurfaces in Northwestern China. Ieee Transactions on Geoscience and RemoteSensing, 59, 1794-1807, https://doi.org/10.1109/tgrs.2020.2998945 
    [54] Wu, S.B.,Zeng, Y.L*., Hao, D.L., Liu, Q.H., Li, J., Chen, X.Z., Asrar, G.R., Yin,G.F., Wen, J.G., Yang, B., Zhu, P., & Chen, M*. (2021). Quantifyingleaf optical properties with spectral invariants theory. Remote Sensing ofEnvironment, 253, 9, https://doi.org/10.1016/j.rse.2020.112131 
    [55] Yu, W.T.,Li, J*., Liu, Q.H., Zhao, J., Dong, Y.D., Zhu, X.R., Lin, S.R., Zhang,H., & Zhang, Z.X. (2021). Gap Filling for Historical Landsat NDVI TimeSeries by Integrating Climate Data. Remote Sensing, 13, 21, https://doi.org/10.3390/rs13030484
    [56] Menenti,M*., Li, X., Jia, L., Yang, K., Pellicciotti,F., Mancini, M., Shi, J.C., Escorihuela, M.J., Zheng, C.L., Chen, Q.T., Lu, J.,Zhou, J., Hu, G.C., Ren, S.T., Zhang, J., Liu, Q.H., Qiu, Y.B., Huang, C.L.,Zhou, J., Han, X.J., Pan, X.D., Li, H.Y., Wu, Y.R., Ding, B.H., Yang, W., Buri,P., McCarthy, M.J., Miles, E.S., Shaw, T.E., Ma, C.F., Zhou, Y.Z., Corbari, C.,Li, R., Zhao, T.J., Stefan, V., Gao, Q., Zhang, J.X., Xie, Q.X., Wang, N., Sun,Y.B., Mo, X.Y., Jia, J.R., Jouberton, A.P., Kneib, M., Fugger, S., Paciolla,N., & Paolini, G. (2021). Multi-Source Hydrological Data Products toMonitor High Asian River Basins and Regional Water Security. Remote Sensing,13, 29, https://doi.org/10.3390/rs13245122 
    [57] Zhang,H., Li, J*., Liu, Q.H., Dong, Y.D., Li, S.Z., Zhang, Z.X., Zhu, X.R.,Liu, L.Y., & Zhao, J. (2021). Estimating Leaf Area Index with Dynamic LeafOptical Properties. Remote Sensing, 13, 17, https://doi.org/10.3390/rs13234898 
    [58] Lin,S.R., Li, J*., Liu, Q.H., Gioli, B., Paul-Limoges, E., Buchmann, N.,Gharun, M., H?rtnagl, L., Foltynová, L., Dusek, J., Li, L.H., & Yuan, W.P.(2021). Improved global estimations of gross primary productivity of naturalvegetation types by incorporating plant functional type. International Journal of Applied Earth Observation and Geoinformation, 100, 14, https://doi.org/10.1016/j.jag.2021.102328 
    [59] Du, Y.M.,Cao, B*., Li, H., Bian, Z.J., Qin, B.X., Xiao, Q., Liu, Q.H., Zeng,Y.J., & Su, Z.B. (2020). Modeling Directional Brightness Temperature (DBT)over Crop Canopy with Effects of Intra-Row Heterogeneity. Remote Sensing, 12,20, https://doi.org/10.3390/rs12172667 
    [60] Wu, J.J.,Wang, X., Zhong, B*., Yang, A.X., Jue, K.S., Wu, J.H., Zhang, L., Xu,W.J., Wu, S.L., Zhang, N., & Liu, Q.H. (2020). Ecological environmentassessment for Greater Mekong Subregion based on Pressure-State-Responseframework by remote sensing. Ecological Indicators, 117, 14, https://doi.org/10.1016/j.ecolind.2020.106521
    [61] Du, Y.M.,Li, H*., Cao, B., Bian, Z.J., Zhao, J.M., Xiao, Q., Liu, Q.H., Zeng,Y.J., & Su, Z.B. (2020). A Modified Interactive Spectral Smooth TemperatureEmissivity Separation Algorithm for Low-Temperature Surface. Ieee Transactionson Geoscience and Remote Sensing, 58, 7643-7653, https://doi.org/10.1109/tgrs.2020.2982960
    [62] Yang,A.X., Zhong, B*., Hu, L.F., Wu, S.L., Xu, Z.P., Wu, H.B., Wu, J.J.,Gong, X.S., Wang, H.B., & Liu, Q.H. (2020). Radiometric Cross-Calibrationof the Wide Field View Camera Onboard GaoFen-6 in Multispectral Bands. RemoteSensing, 12, 21, https://doi.org/10.3390/rs12061037 
    [63] Qin,B.X., Cao, B*., Li, H., Bian, Z.J., Hu, T., Du, Y.M., Yang, Y.P., Xiao,Q., & Liu, Q.H. (2020). Evaluation of Six High-Spatial Resolution Clear-SkySurface Upward Longwave Radiation Estimation Methods with MODIS. RemoteSensing, 12, 24, https://doi.org/10.3390/rs12111834 
    [64] Liu, J., &Liu, Q.H*. (2020). Soil Moisture Estimate Uncertainties from the Effectof Soil Texture on Dielectric Semiempirical Models. Remote Sensing, 12, 21, https://doi.org/10.3390/rs12142343
    [65] Hu, T*., Renzullo, L.J., van Dijk, A., He, J.,Tian, S.Y., Xu, Z.H., Zhou, J., Liu, T.J., & Liu, Q.H. (2020). Monitoringagricultural drought in Australia using MTSAT-2 land surface temperatureretrievals. Remote Sensing of Environment, 236, 13, https://doi.org/10.1016/j.rse.2019.111419
    [66] Bian,Z.J., Roujean, J.L., Lagouarde, J.P., Cao, B., Li, H., Du, Y.M*., Liu,Q., Xiao, Q., & Liu, Q.H. (2020). A semi-empirical approach for modelingthe vegetation thermal infrared directional anisotropy of canopies based onusing vegetation indices. Isprs Journal of Photogrammetry and Remote Sensing,160, 136-148, https://doi.org/10.1016/j.isprsjprs.2019.12.004 
    [67] Zhong,B., Wu, S.L., Yang, A.X*., Ao, K., Wu, J.H., Wu, J.J., Gong, X.S., Wang,H.B., & Liu, Q.H. (2020). An Atmospheric Correction Method over Bright andStable Surfaces for Moderate to High Spatial-Resolution Optical Remotely SensedImagery. Remote Sensing, 12, 16, https://doi.org/10.3390/rs12040733 
    [68] Liu, J., Ferrazzoli,P*., Guerriero, L., Bai, J.H., Liu, Q.H*., & Zhang, Z.J. (2020).Modeling Microwave Emission of Corn Crop Considering Leaf Shape and OrientationUnder the Physical Optics Approximation. Ieee Transactions on Geoscience andRemote Sensing, 58, 8316-8331, https://doi.org/10.1109/tgrs.2020.2986256 
    [69] You,D.Q., Wen, J.G*., Liu, Q., Zhang, Y.T., Tang, Y., Liu, Q.H., & Xie, H.J.(2020). The Component-Spectra-Parameterized Angular and Spectral Kernel-DrivenModel: A Potential Solution for Global BRDF/Albedo Retrieval From MultisensorSatellite Data. Ieee Transactions on Geoscience and Remote Sensing, 58,8674-8688, https://doi.org/10.1109/tgrs.2020.2989635 
    [70] Li, R.B.,Li, H*., Sun, L., Yang, Y.K., Hu, T., Bian, Z.J., Cao, B., Du, Y.M.,& Liu, Q.H. (2020). An Operational Split-Window Algorithm for RetrievingLand Surface Temperature from Geostationary Satellite Data: A Case Study onHimawari-8 AHI Data. Remote Sensing, 12, 24, https://doi.org/10.3390/rs12162613
    [71] Zhao, J.,Li, J*., Liu, Q.H., Xu, B.D., Yu, W.T., Lin, S.R., & Hu, Z. (2020).Estimating fractional vegetation cover from leaf area index and clumping indexbased on the gap probability theory. International Journal of Applied EarthObservation and Geoinformation, 90, 10, https://doi.org/10.1016/j.jag.2020.102112
    [72] Lin,X.W., Wen, J.G*., Liu, Q.H., You, D.Q., Wu, S.B., Hao, D.L., Xiao, Q.,Zhang, Z.Y., & Zhang, Z.Z. (2020). Spatiotemporal Variability of LandSurface Albedo over the Tibet Plateau from 2001 to 2019. Remote Sensing, 12,18, https://doi.org/10.3390/rs12071188 
    [73] Xu, B.D.,Li, J*., Park, T.J., Liu, Q.H*., Zeng, Y.L., Yin, G.F., Yan, K.,Chen, C., Zhao, J., Fan, W.L., Knyazikhin, Y., & Myneni, R.B. (2020).Improving leaf area index retrieval over heterogeneous surface mixed withwater. Remote Sensing of Environment, 240, 16, https://doi.org/10.1016/j.rse.2020.111700
    [74] Zeng,Y.L., Badgley, G., Chen, M., Li, J*., Anderegg, L.D.L., Kornfeld, A.,Liu, Q.H., Xu, B.D., Yang, B., Yan, K., & Berry, J.A. (2020). A radiativetransfer model for solar induced fluorescence using spectral invariants theory.Remote Sensing of Environment, 240, 15, https://doi.org/10.1016/j.rse.2020.111678
    [75] Zeng,Y.L., Li, J*., Liu, Q.H., Huete, A.R., Xu, B.D., Yin, G.F., Fan, W.L.,Ouyang, Y.X., Yan, K., Hao, D.L., & Chen, M. (2020). A Radiative TransferModel for Patchy Landscapes Based on Stochastic Radiative Transfer Theory. IeeeTransactions on Geoscience and Remote Sensing, 58, 2571-2589, https://doi.org/10.1109/tgrs.2019.2952377
    [76] Bian,Z.J., Li, H*., G?ttsche, F.M., Li, R.B., Du, Y.M., Ren, H.Z., Cao, B.,Xiao, Q., & Liu, Q.H. (2020). Retrieving Soil and Vegetation TemperaturesFrom Dual-Angle and Multipixel Satellite Observations. Ieee Journal of SelectedTopics in Applied Earth Observations and Remote Sensing, 13, 5536-5549, https://doi.org/10.1109/jstars.2020.3024190
    [77] Wu, S.B.,Wen, J.G*., Liu, Q.H., You, D.Q., Yin, G.F., & Lin, X.W. (2020).Improving Kernel-Driven BRDF Model for Capturing Vegetation Canopy ReflectanceWith Large Leaf Inclinations. Ieee Journal of Selected Topics in Applied EarthObservations and Remote Sensing, 13, 2639-2655, https://doi.org/10.1109/jstars.2020.2987424
    [78] Yu, W.T.,Li, J*., Liu, Q.H., Yin, G.F., Zeng, Y.L., Lin, S.R., & Zhao, J.(2020). A Simulation-Based Analysis of Topographic Effects on LAI InversionOver Sloped Terrain. Ieee Journal of Selected Topics in Applied EarthObservations and Remote Sensing, 13, 794-806, https://doi.org/10.1109/jstars.2020.2970999
    [79] Cao, B*.,Liu, Q.H*., Du, Y.M., Roujean, J.L.,Gastellu-Etchegorry, J.P., Trigo, I.F., Zhan, W.F., Yu, Y.Y., Cheng, J., Jacob,F., Lagouarde, J.P., Bian, Z.J., Li, H., Hu, T., & Xiao, Q. (2019). Areview of earth surface thermal radiation directionality observing andmodeling: Historical development, current status and perspectives. RemoteSensing of Environment, 232, 29, https://doi.org/10.1016/j.rse.2019.111304 
    [80] Du, Y.M.,Cao, B*., Li, H., Xiao, Q., Liu, Q.H., Zeng, Y.J., & Su, Z.B.(2019). An Experimental Study on Separating Temperature and Emissivity of aNonisothermal Surface. Ieee Geoscience and Remote Sensing Letters, 16,1610-1614, https://doi.org/10.1109/lgrs.2019.2905016 
    [81] Hu, T., Li,H*., Cao, B., van Dijk, A., Renzullo, L.J., Xu, Z., Zhou, J., Du, Y.M.,& Liu, Q.H*. (2019). Influence of emissivity angular variation onland surface temperature retrieved using the generalized split-windowalgorithm. International Journal of Applied Earth Observation andGeoinformation, 82, 11, https://doi.org/10.1016/j.jag.2019.101917 
    [82] Li, H.,Yang, Y.K., Li, R.B., Wang, H.S., Cao, B., Bian, Z.J., Hu, T., Du, Y.M*.,Sun, L., & Liu, Q.H. (2019). Comparison of the MuSyQ and MODIS Collection 6Land Surface Temperature Products Over Barren Surfaces in the Heihe RiverBasin, China. Ieee Transactions on Geoscience and Remote Sensing, 57,8081-8094, https://doi.org/10.1109/tgrs.2019.2918259 
    [83] Li, H.,Wang, H.S., Yang, Y.K., Du, Y.M*., Cao, B., Bian, Z.J., & Liu, Q.H.(2019). Evaluation of Atmospheric Correction Methods for the ASTER Temperatureand Emissivity Separation Algorithm Using Ground Observation Networks in theHiWATER Experiment. Ieee Transactions on Geoscience and Remote Sensing, 57,3001-3014, https://doi.org/10.1109/tgrs.2018.2879316 
    [84] Ni, W.J*., Zhang, Z.Y., Sun, G.Q., & Liu, Q.H.(2019). Modeling the Stereoscopic Features of Mountainous Forest Landscapes forthe Extraction of Forest Heights from Stereo Imagery. Remote Sensing, 11, 21, https://doi.org/10.3390/rs11101222
    [85] Wang, C.,Beringer, J., Hutley, L.B., Cleverly, J., Li, J., Liu, Q.H., & Sun, Y*.(2019). Phenology Dynamics of Dryland Ecosystems Along the North AustralianTropical Transect Revealed by Satellite Solar-Induced Chlorophyll Fluorescence.Geophysical Research Letters, 46, 5294-5302, https://doi.org/10.1029/2019gl082716
    [86] Wu, S.B.,Wen, J.G*., Gastellu-Etchegorry, J.P., Liu, Q.H., You, D.Q., Xiao, Q.,Hao, D.L., Lin, X.W., & Yin, T.G. (2019). The definition of remotely sensedreflectance quantities suitable for rugged terrain. Remote Sensing ofEnvironment, 225, 403-415, https://doi.org/10.1016/j.rse.2019.01.005 
    [87] Zhang, Y*., Zhang, G.Y., Zhao, H.H., Cao, Y.M., Liu,Q.H*., Shen, Z.F., & Li, A.M. (2019). A Convenient Tool for DistrictHeating Route Optimization Based on Parallel Ant Colony System Algorithm and 3DWebGIS. Isprs International Journal of Geo-Information, 8, 18, https://doi.org/10.3390/ijgi8050225
    [88] Du, Y*., Yang, C., Liu, Q.H., & Li, Z.Y.(2019). Physically Based Polarimetric Volumetric Scattering From CylindricallyDominated Vegetation Canopies. Ieee Transactions on Geoscience and RemoteSensing, 57, 1629-1636, https://doi.org/10.1109/tgrs.2018.2867861 
    [89] Guo,M.Z., Cao, B., Fan, W.J*., Ren, H.Z., Cui, Y.K., Du, Y.M., & Liu,Q.H. (2019). Scattering Effect Contributions to the Directional CanopyEmissivity and Brightness Temperature Based on CE-P and CBT-P Models. IeeeGeoscience and Remote Sensing Letters, 16, 957-961, https://doi.org/10.1109/lgrs.2018.2886606
    [90] Lin, S.R.,Li, J*., Liu, Q.H., Li, L.H., Zhao, J., & Yu, W.T. (2019).Evaluating the Effectiveness of Using Vegetation Indices Based on Red-EdgeReflectance from Sentinel-2 to Estimate Gross Primary Productivity. RemoteSensing, 11, 25, https://doi.org/10.3390/rs11111303 
    [91] Hu, T.,Renzullo, L.J., Cao, B*., van Dijk, A., Du, Y.M., Li, H., Cheng, J., Xu,Z.H., Zhou, J., & Liu, Q.H*. (2019). Directional variation insurface emissivity inferred from the MYD21 product and its influence onestimated surface upwelling longwave radiation. Remote Sensing of Environment,228, 45-60 https://doi.org/10.1016/j.rse.2019.04.012 
    [92] Ma, Q.M.,Li, Y.J*., Li, J., & Liu, Q.H*. (2019). Modeling ofMixed-Pixel Clumping Index From Remote Sensing Data and Its Evaluation. IeeeJournal of Selected Topics in Applied Earth Observations and Remote Sensing,12, 2320-2331, https://doi.org/10.1109/jstars.2019.2897818 
    [93] Wu, S.B.,Wen, J.G*., You, D.Q., Zhang, H.L., Xiao, Q., & Liu, Q.H. (2019).Algorithms for Calculating Topographic Parameters and Their Uncertainties inDownward Surface Solar Radiation Estimation. Ieee Geoscience and Remote SensingLetters, 16, 160-160, https://doi.org/10.1109/lgrs.2018.2868526 
    [94] Li, F.G.,Xin, X.Z*., Peng, Z.Q., & Liu, Q.H. (2019). Estimating dailyevapotranspiration based on a model of evaporative fraction (EF) for mixedpixels. Hydrology and Earth System Sciences, 23, 949-969, https://doi.org/10.5194/hess-23-949-2019
    [95] Liang,S.L*., Liu, Q.H., Yan, G.J., Shi, J.C., &Kerekes, J.P. (2019). Foreword to the Special Issue on The Recent Progress inQuantitative Land Remote Sensing: Modeling and Estimation. Ieee Journal ofSelected Topics in Applied Earth Observations and Remote Sensing, 12, 391-395, https://doi.org/10.1109/jstars.2019.2895942
    [96] Wu, S.B.,Wen, J.G*., Lin, X.W., Hao, D.L., You, D.Q., Xiao, Q., Liu, Q.H., &Yin, T.G. (2019). Modeling Discrete Forest Anisotropic Reflectance Over aSloped Surface With an Extended GOMS and SAIL Model. Ieee Transactions onGeoscience and Remote Sensing, 57, 944-957, https://doi.org/10.1109/tgrs.2018.2863605
    [97] Wu, S.B.,Wen, J.G*., Xiao, Q., Liu, Q.H., Hao, D.L., Lin, X.W., & You, D.Q.(2019). Derivation of Kernel Functions for Kernel-Driven Reflectance Model OverSloping Terrain. Ieee Journal of Selected Topics in Applied Earth Observationsand Remote Sensing, 12, 396-409, https://doi.org/10.1109/jstars.2018.2854771 
    [98] Yin, G.F*., Verger, A., Qu, Y.H., Zhao, W., Xu, B.D.,Zeng, Y.L., Liu, K., Li, J*., & Liu, Q.H. (2019). Retrieval of HighSpatiotemporal Resolution Leaf Area Index with Gaussian Processes, WirelessSensor Network, and Satellite Data Fusion. Remote Sensing, 11, 18, https://doi.org/10.3390/rs11030244
    [99] Yu, S.S.,Xin, X.Z*., Liu, Q.H., Zhang, H.L., & Li, L. (2019). An ImprovedParameterization for Retrieving Clear-Sky Downward Longwave Radiation fromSatellite Thermal Infrared Data. Remote Sensing, 11, 27, https://doi.org/10.3390/rs11040425
    [100] Zhang, D.F., Liu, J.L., Ni, W.J*.,Sun, G.Q., Zhang, Z.Y., Liu, Q.H., & Wang, Q. (2019). Estimation of ForestLeaf Area Index Using Height and Canopy Cover Information Extracted FromUnmanned Aerial Vehicle Stereo Imagery. Ieee Journal of Selected Topics inApplied Earth Observations and Remote Sensing, 12, 471-481, https://doi.org/10.1109/jstars.2019.2891519
    [101] Cao, B., Gastellu-Etchegorry, J.P., Du,Y.M*., Li, H., Bian, Z.J., Hu, T., Fan, W.J., Xiao, Q., & Liu, Q.H.(2019). Evaluation of Four Kernel-Driven Models in the Thermal Infrared Band.Ieee Transactions on Geoscience and Remote Sensing, 57, 5456-5475, https://doi.org/10.1109/tgrs.2019.2899600
    [102] Lin, S.R., Li, J*., Liu, Q.H*., Huete,A., & Li, L.H. (2018). Effects of Forest Canopy Vertical Stratification onthe Estimation of Gross Primary Production by Remote Sensing. Remote Sensing,10, 25,https://doi.org/10.3390/rs10091329 
    [103] Yin, G.F*., Li, A.N*., Wu, S.B., Fan, W.L., Zeng, Y.L., Yan, K.,Xu, B.D., Li, J., & Liu, Q.H. (2018). PLC: A simple and semi-physicaltopographic correction method for vegetation canopies based on path lengthcorrection. Remote Sensing of Environment, 215, 184-198, https://doi.org/10.1016/j.rse.2018.06.009
    [104] Zhang, Y., Zhao, H.H., Cao, Y.M*., Liu,Q.H*., Shen, Z.F., Wang, J., & Hu, M.G. (2018). A Hybrid Ant Colony andCuckoo Search Algorithm for Route Optimization of Heating Engineering.Energies, 11, 23, https://doi.org/10.3390/en11102675 
    [105] Huang, H.G*., Zhang, Z.Y., Ni, W.J., Chai, L.N., Qin, W.H., Liu, G.,Xie, D.H., Jiang, L.M., & Liu, Q.H. (2018). Extending RAPID model tosimulate forest microwave backscattering. Remote Sensing of Environment, 217,272-291, https://doi.org/10.1016/j.rse.2018.08.011 
    [106] Liu, J., Liu, Q.H*., Li, H*., Du,Y.M., & Cao, B. (2018). An mproved Microwave Semiempirical Model for theDielectric Behavior of Moist Soils. Ieee Transactions on Geoscience and RemoteSensing, 56, 6630-6644, https://doi.org/10.1109/tgrs.2018.2841025 
    [107] Liu, Q.H*., Yan, G.J., Jiao, Z.T., Xiao, Q., Wen, J.G., Liang,S.L*., Wang, J.D., Schaaf, C., & Strahler, A. (2018). FromGeometric-Optical Remote Sensing Modeling to Quantitative Remote SensingScience-In Memory of Academician Xiaowen Li. Remote Sensing, 10, 11, https://doi.org/10.3390/rs10111764
    [108] Bian, Z.J., Cao, B., Li, H., Du, Y.M.,Lagouarde, J.P., Xiao, Q., & Liu, Q.H*. (2018). An analyticalfour-component directional brightness temperature model for crop and forestcanopies. Remote Sensing of Environment, 209, 731-746, https://doi.org/10.1016/j.rse.2018.03.010
    [109] Bian, Z.J., Cao, B.A., Li, H., Du, Y.M*.,Huang, H.G., Xiao, Q., & Liu, Q.H*. (2018). Modeling theDistributions of Brightness Temperatures of a Cropland Study Area Using a Modelthat Combines Fast Radiosity and Energy Budget Methods. Remote Sensing, 10, 20,https://doi.org/10.3390/rs10050736 
    [110] Fan, W.L., Li, J., Liu, Q.H., Zhang, Q., Yin,G.F., Li, A.N., Zeng, Y.L., Xu, B.D., Xu, X.J., Zhou, G.M*., & Du, H.Q*.(2018). Topographic Correction of Forest Image Data Based on the CanopyReflectance Model for Sloping Terrains in Multiple Forward Mode. RemoteSensing, 10, 16, https://doi.org/10.3390/rs10050717 
    [111] Ni, W.J., Zhang, Z.Y., Sun, G.Q*.,& Liu, Q.H. (2018). Modeling Interferometric SAR Features of ForestCanopies Over Mountainous Area at Landscape Scales. Ieee Transactions onGeoscience and Remote Sensing, 56, 2958-2967, https://doi.org/10.1109/tgrs.2017.2787704
    [112] Xu, B.D., Li, J*., Park, T*., Liu, Q.H*.,Zeng, Y.L., Yin, G.F., Zhao, J., Fan, W.L., Yang, L., Knyazikhin, Y., &Myneni, R.B. (2018). An integrated method for validating long-term leaf areaindex products using global networks of site-based measurements. Remote Sensingof Environment, 209, 134-151, https://doi.org/10.1016/j.rse.2018.02.049 
    [113] Yu, S.S., Xin, X.Z*., Liu, Q.H.,Zhang, H.L., & Li, L. (2018). Comparison of Cloudy-Sky Downward LongwaveRadiation Algorithms Using Synthetic Data, Ground-Based Data, and SatelliteData. Journal of Geophysical Research-Atmospheres, 123, 5397-5415, https://doi.org/10.1029/2017jd028234
    [114] Wen, J.G*., Liu, Q., Xiao, Q., Liu, Q.H., You, D.Q., Hao, D.L.,Wu, S.B., & Lin, X.W. (2018). Characterizing Land Surface AnisotropicReflectance over Rugged Terrain: A Review of Concepts and Recent Developments.Remote Sensing, 10, 30, https://doi.org/10.3390/rs10030370 
    [115] Zhang, H.L., Huang, C., Yu, S.S., Li, L., Xin,X.Z*., & Liu, Q.H*. (2018). A Lookup-Table-Based Approach to EstimatingSurface Solar Irradiance from Geostationary and Polar-Orbiting Satellite Data.Remote Sensing, 10, 19, https://doi.org/10.3390/rs10030411 
    [116] Yu, W.T., Li, J*., Liu, Q.H*., Zeng,Y.L., Zhao, J., Xu, B.D., & Yin, G.F. (2018). Global Land CoverHeterogeneity Characteristics at Moderate Resolution for Mixed Pixel Modelingand Inversion. Remote Sensing, 10, 17, https://doi.org/10.3390/rs10060856 
    [117] Zhao, J., Li, J*., Liu, Q.H*., Wang,H.Y., Chen, C., Xu, B.D., & Wu, S.L. (2018). Comparative Analysis ofChinese HJ-1 CCD, GF-1 WFV and ZY-3 MUX Sensor Data for Leaf Area IndexEstimations for Maize. Remote Sensing, 10, 20, https://doi.org/10.3390/rs10010068
    [118] Lin, X.W., Wen, J.G*., Liu, Q.H*.,Xiao, Q., You, D.Q., Wu, S.B., Hao, D.L., & Wu, X.D. (2018). A Multi-ScaleValidation Strategy for Albedo Products over Rugged Terrain and PreliminaryApplication in Heihe River Basin, China. Remote Sensing, 10, 23, https://doi.org/10.3390/rs10020156
    [119] Xu, B.D., Park, T*., Yan, K., Chen,C., Zeng, Y.L., Song, W.J., Yin, G.F., Li, J., Liu, Q.H., Knyazikhin, Y., &Myneni, R.B. (2018). Analysis of Global LAI/FPAR Products from VIIRS and MODISSensors for Spatio-Temporal Consistency and Uncertainty from 2012-2016.Forests, 9, 21, https://doi.org/10.3390/f9020073 
    [120] Cao, B., Guo, M.Z., Fan, W.J*., Xu,X.R., Peng, J.J., Ren, H.Z., Du, Y.M*., Li, H., Bian, Z.J., Hu, T.,Xiao, Q., & Liu, Q.H. (2018). A New Directional Canopy Emissivity ModelBased on Spectral Invariants. Ieee Transactions on Geoscience and RemoteSensing, 56, 6911-6926, https://doi.org/10.1109/tgrs.2018.2845678 
    [121] Liu, S.M*., Li, X., Xu, Z.W., Che, T., Xiao, Q., Ma, M.G., Liu,Q.H., Jin, R., Guo, J.W., Wang, L.X., Wang, W.Z., Qi, Y., Li, H.Y., Xu, T.R.,Ran, Y.H., Hu, X.L., Shi, S.J., Zhu, Z.L., Tan, J.L., Zhang, Y., & Ren,Z.G. (2018). The Heihe Integrated Observatory Network: A Basin-Scale LandSurface Processes Observatory in China. Vadose Zone Journal, 17, 21, https://doi.org/10.2136/vzj2018.04.0072
    [122] Wu, S.B., Wen, J.G*., You, D.Q., Hao,D.L., Lin, X.W., Xiao, Q., Liu, Q.H., & Gastellu-Etchegorry, J.P. (2018).Characterization of Remote sensing Albedo Over Sloped Surfaces Based on DARTSimulations and In Situ Observations. Journal of GeophysicalResearch-Atmospheres, 123, 8599-8622, https://doi.org/10.1029/2018jd028283 
    [123] Wu, S.B., Wen, J.G*., You, D.Q.,Zhang, H.L., Xiao, Q., & Liu, Q.H. (2018). Algorithms for CalculatingTopographic Parameters and Their Uncertainties in Downward Surface SolarRadiation (DSSR) Estimation. Ieee Geoscience and Remote Sensing Letters, 15,1149-1153, https://doi.org/10.1109/lgrs.2018.2831916 
    [124] Wu, J.J., Gao, Z.H., Liu, Q.H., Li, Z.Y*.,& Zhong, B. (2018). Methods for sandy land detection based on multispectralremote sensing data. Geoderma, 316, 89-99, https://doi.org/10.1016/j.geoderma.2017.12.015
    [125] Zhao, J., Li, J*., Liu, Q.H., Yang,L., & Bai, J.H. (2018). A method of analyzing LAI underestimation for densevegetation based on the vertical distribution of the leaf area density. RemoteSensing Letters, 9, 121-130, https://doi.org/10.1080/2150704x.2017.1399471 
    [126] Wang, C., Li, J*., Liu, Q.H*.,Zhong, B., Wu, S.L., & Xia, C.F. (2017). Analysis of Differences inPhenology Extracted from the Enhanced Vegetation Index and the Leaf Area Index.Sensors, 17, 16, https://doi.org/10.3390/s17091982 
    [127] Bian, Z.J., Du, Y.M*., Li, H., Cao,B.A., Huang, H.G., Xiao, Q., & Liu, Q.H*. (2017). Modeling theTemporal Variability of Thermal Emissions From Row-Planted Scenes Using aRadiosity and Energy Budget Method. Ieee Transactions on Geoscience and RemoteSensing, 55, 6010-6026, https://doi.org/10.1109/tgrs.2017.2719098 
    [128] Li, X.J., Xin, X.Z*., Peng, Z.Q.,Zhang, H.L., Li, L., Shao, S.S., & Liu, Q.H. (2017). Estimation of landsurface heat fluxes based on visible infrared imaging radiometer suite data:case study in northern China. Journal of Applied Remote Sensing, 11, 15, https://doi.org/10.1117/1.Jrs.11.046012
    [129] Zhang, Y., Liu, Q.H*., Tan, L.F.,Huang, H.G., Ni, W.J., Yin, T.G., Qin, W.H., & Sun, G.Q. (2017). A 3-DJoint Simulation Platform for Multiband Remote Sensing. Ieee Journal ofSelected Topics in Applied Earth Observations and Remote Sensing, 10,4763-4778, https://doi.org/10.1109/jstars.2017.2750223 
    [130] Zhong, B*, Chen, W.H., Wu, S.L., Hu, L.F., Luo, X.B., & Liu,Q.H. (2017). A Cloud Detection Method Based on Relationship Between Objects ofCloud and Cloud-Shadow for Chinese Moderate to High Resolution SatelliteImagery. Ieee Journal of Selected Topics in Applied Earth Observations andRemote Sensing, 10, 4898-4908, https://doi.org/10.1109/jstars.2017.2734912 
    [131] Yang, A.X., Zhong, B*., Wu, S.L.,& Liu, Q.H*. (2017). Radiometric Cross-Calibration of GF-4 inMultispectral Bands. Remote Sensing, 9, 17, https://doi.org/10.3390/rs9030232 
    [132] Huang, H.G*., Qin, W.H., Spurr, R.J.D., & Liu, Q.H. (2017).Evaluation of Atmospheric Effects on Land-Surface Directional Reflectance Withthe Coupled RAPID and VLIDORT Models. Ieee Geoscience and Remote SensingLetters, 14, 916-920, https://doi.org/10.1109/lgrs.2017.2687702 
    [133] Zhong, B*., Wu, S.L., Yang, A.X., & Liu, Q.H. (2017). AnImproved Aerosol Optical Depth Retrieval Algorithm for Moderate to High SpatialResolution Optical Remotely Sensed Imagery. Remote Sensing, 9, 16, https://doi.org/10.3390/rs9060555
    [134] Yang, A.X., Zhong, B*., Wu, S.L.,& Liu, Q.H*. (2017). Evaluation on Radiometric Capability of ChineseOptical Satellite Sensors. Sensors, 17, 20, https://doi.org/10.3390/s17010204 
    [135] Wen, J.G., Dou, B.C., You, D.Q., Tang, Y., Xiao,Q*., Liu, Q., & Qinhuo, L. (2017). Forward a Small-TimescaleBRDF/Albedo by Multisensor Combined BRDF Inversion Model. Ieee Transactions onGeoscience and Remote Sensing, 55, 683-697, https://doi.org/10.1109/tgrs.2016.2613899
    [136] Bian, Z.J., Cao, B., Li, H., Du, Y.M*.,Song, L.S., Fan, W.J., Xiao, Q., & Liu, Q.H*. (2017). A RobustInversion Algorithm for Surface Leaf and Soil Temperatures Using the VegetationClumping Index. Remote Sensing, 9, 16, https://doi.org/10.3390/rs9080780 
    [137] Hu, T., Cao, B*., Du, Y.M., Li, H.,Wang, C., Bian, Z.J., Sun, D.L., & Liu, Q.H*. (2017). Estimation ofSurface Upward Longwave Radiation Using a Direct Physical Algorithm. IeeeTransactions on Geoscience and Remote Sensing, 55, 4412-4426, https://doi.org/10.1109/tgrs.2017.2692261
    [138] Li, X.J., Xin, X.Z*., Jiao, J.J.,Peng, Z.Q., Zhang, H.L., Shao, S.S., & Liu, Q.H. (2017). EstimatingSubpixel Surface Heat Fluxes through Applying Temperature-Sharpening Methods toMODIS Data. Remote Sensing, 9, 30, https://doi.org/10.3390/rs9080836 
    [139] Wang, Q.X., Sun, L.*, Wei, J., Yang,Y.K., Li, R.B., Liu, Q.H., & Chen, L.F. (2017). Validation and AccuracyAnalysis of Global MODIS Aerosol Products over Land. Atmosphere, 8, 17, https://doi.org/10.3390/atmos8080155 
    [140] Wu, X.D., Wen, J.G*., Xiao, Q., Liu,Q., Peng, J.J., Dou, B.C., Li, X.H., You, D.Q., Tang, Y., & Liu, Q.H.(2016). Coarse scale in situ albedo observations over heterogeneous snow-freeland surfaces and validation strategy: A case of MODIS albedo productspreliminary validation over northern China. Remote Sensing of Environment, 184,25-39, https://doi.org/10.1016/j.rse.2016.06.013 
    [141] Hu, T., Du, Y.M*., Cao, B., Li, H.,Bian, Z.J., Sun, D.L., & Liu, Q.H*. (2016). Estimation of UpwardLongwave Radiation From Vegetated Surfaces Considering Thermal Directionality.Ieee Transactions on Geoscience and Remote Sensing, 54, 6644-6658, https://doi.org/10.1109/tgrs.2016.2587695
    [142] Peng, Z.Q., Xin, X.Z*., Jiao, J.J.,Zhou, T., & Liu, Q.H. (2016). Remote sensing algorithm for surfaceevapotranspiration considering landscape and statistical effects on mixedpixels. Hydrology and Earth System Sciences, 20, 4409-4438, https://doi.org/10.5194/hess-20-4409-2016
    [143] Zeng, Y.L., Li, J*., Liu, Q.H*.,Huete, A.R., Xu, B.D., Yin, G.F., Zhao, J., Yang, L., Fan, W.L., Wu, S.B.,& Yan, K. (2016). An Iterative BRDF/NDVI Inversion Algorithm Based on APosteriori Variance Estimation of Observation Errors. Ieee Transactions onGeoscience and Remote Sensing, 54, 6481-6496, https://doi.org/10.1109/tgrs.2016.2585301
    [144] Xu, B.D., Li, J*., Liu, Q.H*, Huete,A.R., Yu, Q., Zeng, Y.L., Yin, G.F., Zhao, J., & Yang, L. (2016).Evaluating Spatial Representativeness of Station Observations for RemotelySensed Leaf Area Index Products. Ieee Journal of Selected Topics in AppliedEarth Observations and Remote Sensing, 9, 3267-3282, https://doi.org/10.1109/jstars.2016.2560878
    [145] Guo, Y.H*., Zhong, B., & Liu, Q.H. (2016). Efficientstripmap-mode synthetic aperture radar raw data generation accounting fortrajectory deviation with a nonzero squint angle. Journal of Applied RemoteSensing, 10, 12, https://doi.org/10.1117/1.Jrs.10.044002 
    [146] Wang, S.G., Li, X*., Ge, Y., Jin, R.,Ma, M.G., Liu, Q.H., Wen, J.G., & Liu, S.M. (2016). Validation ofRegional-Scale Remote Sensing Products in China: From Site to Network. RemoteSensing, 8, 26, https://doi.org/10.3390/rs8120980 
    [147] Zhang, Y., Liu, Q.H*., Du, Y., Yang,L., Du, Y.M., Cao, B., & Tan, L.F. (2016). Convenient Measurement andModified Model for Broadleaf Permittivity. Ieee Transactions on Geoscience andRemote Sensing, 54, 6986-6996, https://doi.org/10.1109/tgrs.2016.2593798 
    [148] Bian, Z.J., Xiao, Q*., Cao, B., Du, Y.M*.,Li, H., Wang, H.S., Liu, Q.H., & Liu, Q. (2016). Retrieval of Leaf, SunlitSoil, and Shaded Soil Component Temperatures Using Airborne Thermal InfraredMultiangle Observations. Ieee Transactions on Geoscience and Remote Sensing,54, 4660-4671, https://doi.org/10.1109/tgrs.2016.2547961 
    [149] Yang, C., Shi, J.C., Liu, Q.H., & Du,Y*. (2016). Scattering From Inhomogeneous Dielectric Cylinders With FiniteLength. Ieee Transactions on Geoscience and Remote Sensing, 54, 4555-4569, https://doi.org/10.1109/tgrs.2016.2544379
    [150] Yin, G.F., Li, J*., Liu, Q.H*., Zhong,B., & Li, A.N. (2016). Improving LAI spatio-temporal continuity using acombination of MODIS and MERSI data. Remote Sensing Letters, 7, 771-780, https://doi.org/10.1080/2150704x.2016.1182657
    [151] Zeng, Y.L., Li, J*., Liu, Q.H*.,Huete, A.R., Yin, G.F., Xu, B.D., Fan, W.L., Zhao, J., Yan, K., & Mu, X.H.(2016). A Radiative Transfer Model for Heterogeneous Agro-Forestry Scenarios.Ieee Transactions on Geoscience and Remote Sensing, 54, 4613-4628, https://doi.org/10.1109/tgrs.2016.2547326 
    [152] Cao, B., Du, Y.M*., Li, J., Li, H.,Li, L., Zhang, Y., Zou, J., & Liu, Q.H*. (2015). Comparison of FiveSlope Correction Methods for Leaf Area Index Estimation From HemisphericalPhotography. Ieee Geoscience and Remote Sensing Letters, 12, 1958-1962, https://doi.org/10.1109/lgrs.2015.2440438
    [153] Tian, X., Li, Z.Y*., Chen, E.X., Liu,Q.H., Yan, G.J., Wang, J.D., Niu, Z., Zhao, S.J., Li, X., Pang, Y., Su, Z.B.,van der Tol, C., Liu, Q.W., Wu, C.Y., Xiao, Q., Yang, L., Mu, X.H., Bo, Y.C.,Qu, Y.H., Zhou, H.M., Gao, S.H., Chai, L.N., Huang, H.G., Fan, W.J., Li, S.H.,Bai, J.H., Jiang, L.M., & Zhou, J. (2015). The Complicate Observations andMulti-Parameter Land Information Constructions on Allied Telemetry Experiment(COMPLICATE). Plos One, 10, 27, https://doi.org/10.1371/journal.pone.0137545 
    [154] Zeng, Y.L., Li, J*., Liu, Q.H*., Hu,R.H., Mu, X.H., Fan, W.L., Xu, B.D., Yin, G.F., & Wu, S.B. (2015).Extracting Leaf Area Index by Sunlit Foliage Component from Downward-LookingDigital Photography under Clear-Sky Conditions. Remote Sensing, 7, 13410-13435,https://doi.org/10.3390/rs71013410 
    [155] Zhong, B*., Yang, A.X., Nie, A.H., Yao, Y.J., Zhang, H., Wu, S.L.,& Liu, Q.H. (2015). Finer Resolution Land-Cover Mapping Using MultipleClassifiers and Multisource Remotely Sensed Data in the Heihe River Basin. IeeeJournal of Selected Topics in Applied Earth Observations and Remote Sensing, 8,4973-4992, https://doi.org/10.1109/jstars.2015.2461453 
    [156] Peng, J.J., Fan, W.J*., Xu, X.R.,Wang, L.Z., Liu, Q.H*., Li, J.C., & Zhao, P. (2015). Estimating CropAlbedo in the Application of a Physical Model Based on the Law of EnergyConservation and Spectral Invariants. Remote Sensing, 7, 15536-15560, https://doi.org/10.3390/rs71115536
    [157] Hu, T., Liu, Q.H*., Du, Y.M*., Li, H.,Wang, H.S., & Cao, B. (2015). Analysis of the Land Surface TemperatureScaling Problem: A Case Study of Airborne and Satellite Data over the HeiheBasin. Remote Sensing, 7, 6489-6509, https://doi.org/10.3390/rs70506489 
    [158] Li, L., Du, Y.M., Tang, Y., Xin, X.Z., Zhang,H.L., Wen, J.G., & Liu, Q.H*. (2015). A New Algorithm of the FPARProduct in the Heihe River Basin Considering the Contributions of Direct andDiffuse Solar Radiation Separately. Remote Sensing, 7, 6414-6432, https://doi.org/10.3390/rs70506414
    [159] Jiang, J.X., Li, H*., Liu, Q.H*.,Wang, H.S., Du, Y.M., Cao, B.A., Zhong, B., & Wu, S.L. (2015). Evaluationof Land Surface Temperature Retrieval from FY-3B/VIRR Data in an Arid Area ofNorthwestern China. Remote Sensing, 7, 7080-7104, https://doi.org/10.3390/rs70607080
    [160] Peng, J.J., Liu, Q*., Wang, L.Z., Liu,Q.H., Fan, W.J*., Lu, M., & Wen, J.G. (2015). Characterizing thePixel Footprint of Satellite Albedo Products Derived from MODIS Reflectance inthe Heihe River Basin, China. Remote Sensing, 7, 6886-6907, https://doi.org/10.3390/rs70606886
    [161] Sun, D.L*., Yu, Y.Y., Yang, H.Q., Fang, L., Liu, Q.H., & Shi,J.C. (2015). A case study for intercomparison of land surface temperatureretrieved from GOES and MODIS. International Journal of Digital Earth, 8,476-494, https://doi.org/10.1080/17538947.2014.906509 
    [162] You, D.Q., Wen, J.G*., Xiao, Q., Liu,Q., Liu, Q.H., Tang, Y., Dou, B.C., & Peng, J.J. (2015). Development of aHigh Resolution BRDF/Albedo Product by Fusing Airborne CASI Reflectance withMODIS Daily Reflectance in the Oasis Area of the Heihe River Basin, China.Remote Sensing, 7, 6784-6807, https://doi.org/10.3390/rs70606784 
    [163] Zhang, Y.L., Li, X*., Wen, J.G., Liu,Q.H., & Yan, G.J. (2015). Improved Topographic Normalization for Landsat TMImages by Introducing the MODIS Surface BRDF. Remote Sensing, 7, 6558-6575, https://doi.org/10.3390/rs70606558
    [164] Zhao, J., Li, J*., Liu, Q.H*., Fan,W.J., Zhong, B., Wu, S.L., Yang, L., Zeng, Y.L., Xu, B.D., & Yin, G.F.(2015). Leaf Area Index Retrieval Combining HJ1/CCD and Landsat8/OLI Data inthe Heihe River Basin, China. Remote Sensing, 7, 6862-6885, https://doi.org/10.3390/rs70606862
    [165] Cao, B., Liu, Q.H., Du, Y.M*., Li, H.,Wang, H.S., & Xiao, Q. (2015). Modeling Directional Brightness TemperatureOver Mixed Scenes of Continuous Crop and Road: A Case Study of the Heihe RiverBasin. Ieee Geoscience and Remote Sensing Letters, 12, 234-238, https://doi.org/10.1109/lgrs.2014.2333874
    [166] Wang, H.S., Xiao, Q*., Li, H., Du,Y.M., & Liu, Q.H. (2015). Investigating the Impact of Soil Moisture onThermal Infrared Emissivity Using ASTER Data. Ieee Geoscience and RemoteSensing Letters, 12, 294-298, https://doi.org/10.1109/lgrs.2014.2336912 
    [167] Yang, L., Liu, Q.H*., Zhao, J., &Bao, L.F. (2015). Global Land Surface Backscatter at Ku-Band Using MergedJason1, Envisat, and Jason2 Data Sets. Ieee Transactions on Geoscience andRemote Sensing, 53, 784-794, https://doi.org/10.1109/tgrs.2014.2328616 
    [168] Yin, G.F., Li, J*., Liu, Q.H*., Li,L.H., Zeng, Y.L., Xu, B.D., Yang, L., & Zhao, J. (2015). Improving LeafArea Index Retrieval Over Heterogeneous Surface by Integrating Textural andContextual Information: A Case Study in the Heihe River Basin. Ieee Geoscienceand Remote Sensing Letters, 12, 359-363, https://doi.org/10.1109/lgrs.2014.2341925
    [169] Zeng, Y.L., Li, J*., Liu, Q.H*., Qu,Y.H., Huete, A.R., Xu, B.D., Yin, G.F., & Zhao, J. (2015). An OptimalSampling Design for Observing and Validating Long-Term Leaf Area Index withTemporal Variations in Spatial Heterogeneities. Remote Sensing, 7, 1300-1319, https://doi.org/10.3390/rs70201300
    [170] Zhang, H.L., Xin, X.Z*., Li, L., &Liu, Q.H. (2015). Estimating global solar radiation using a hybrid parametricmodel from MODIS data over the Tibetan Plateau. Solar Energy, 112, 373-382, https://doi.org/10.1016/j.solener.2014.12.015
    [171] Li, L., Xin, X.Z*., Zhang, H.L., Yu,J.F., Liu, Q.H., Yu, S.S., & Wen, J.G. (2015). A method for estimatinghourly photosynthetically active radiation (PAR) in China by combininggeostationary and polar-orbiting satellite data. Remote Sensing of Environment,165, 14-26, https://doi.org/10.1016/j.rse.2015.03.034 
    [172] Yang, A.X., Zhong, B*., Lv, W.B., Wu,S.L., & Liu, Q.H. (2015). Cross-Calibration of GF-1/WFV over a Desert SiteUsing Landsat-8/OLI Imagery and ZY-3/TLC Data. Remote Sensing, 7, 10763-10787, https://doi.org/10.3390/rs70810763
    [173] Fan, W.L., Li, J., & Liu, Q.H*.(2015). GOST2: The Improvement of the Canopy Reflectance Model GOST inSeparating the Sunlit and Shaded Leaves. Ieee Journal of Selected Topics inApplied Earth Observations and Remote Sensing, 8, 1423-1431, https://doi.org/10.1109/jstars.2015.2413994
    [174] Peng, J.J., Liu, Q*., Wen, J.G., Liu,Q.H., Tang, Y., Wang, L.Z., Dou, B.C., You, D.Q., Sun, C.K., Zhao, X.J., Feng,Y.B., & Shi, J. (2015). Multi-scale validation strategy for satellite albedoproducts and its uncertainty analysis. Science China-Earth Sciences, 58,573-588, https://doi.org/10.1007/s11430-014-4997-y 
    [175] Wen, J.G., Liu, Q., Tang, Y., Dou, B.C., You,D.Q., Xiao, Q*., Liu, Q.H., & Li, X.W. (2015). Modeling Land SurfaceReflectance Coupled BRDF for HJ-1/CCD Data of Rugged Terrain in Heihe RiverBasin, China. Ieee Journal of Selected Topics in Applied Earth Observations andRemote Sensing, 8, 1506-1518, https://doi.org/10.1109/jstars.2015.2416254 
    [176] Yin, G.F., Li, J*., Liu, Q.H*., Fan,W.L., Xu, B.D., Zeng, Y.L., & Zhao, J. (2015). Regional Leaf Area IndexRetrieval Based on Remote Sensing: The Role of Radiative Transfer ModelSelection. Remote Sensing, 7, 4604-4625, https://doi.org/10.3390/rs70404604 
    [177] Cao, B.A., Du, Y.M*., Xu, D.Q., Li,H., & Liu, Q.H. (2015). An improved histogram matching algorithm for theremoval of striping noise in optical remote sensing imagery. Optik, 126,4723-4730, https://doi.org/10.1016/j.ijleo.2015.08.079 
    [178] Zhong, B*., Zhang, Y.H., Du, T.T., Yang, A.X., Lv, W.B., & Liu,Q.H*. (2014). Cross-Calibration of HJ-1/CCD Over a Desert Site UsingLandsat ETM plus Imagery and ASTER GDEM Product. Ieee Transactions onGeoscience and Remote Sensing, 52, 7247-7263, https://doi.org/10.1109/tgrs.2014.2310233
    [179] Zeng, Y.L., Li, J*., Liu, Q.H*., Li,L.H., Xu, B.D., Yin, G.F., & Peng, J.J. (2014). A Sampling Strategy forRemotely Sensed LAI Product Validation Over Heterogeneous Land Surfaces. IeeeJournal of Selected Topics in Applied Earth Observations and Remote Sensing, 7,3128-3142, https://doi.org/10.1109/jstars.2014.2312231 
    [180] Li, H., Sun, D.L., Yu, Y.Y., Wang, H.Y., Liu,Y.L., Liu, Q.H*., Du, Y.M., Wang, H.S., & Cao, B.A. (2014).Evaluation of the VIIRS and MODIS LST products in an arid area of NorthwestChina. Remote Sensing of Environment, 142, 111-121, https://doi.org/10.1016/j.rse.2013.11.014
    [181] Zhong, B*., Ma, P., Nie, A.H., Yang, A.X., Yao, Y.J., Lü, W.B.,Zhang, H., & Liu, Q.H. (2014). Land cover mapping using time seriesHJ-1/CCD data. Science China-Earth Sciences, 57, 1790-1799, https://doi.org/10.1007/s11430-014-4877-5
    [182] You, D.Q., Wen, J.G*., Liu, Q., Liu,Q.H., & Tang, Y. (2014). The Angular and Spectral Kernel-Driven Model:Assessment and Application. Ieee Journal of Selected Topics in Applied EarthObservations and Remote Sensing, 7, 1331-1345, https://doi.org/10.1109/jstars.2013.2271502 
    [183] Huang, H.G*., Qin, W.H., & Liu, Q.H. (2013). RAPID: A RadiosityApplicable to Porous Individual Objects for directional reflectance over complexvegetated scenes. Remote Sensing of Environment, 132, 221-237, https://doi.org/10.1016/j.rse.2013.01.013
    [184] Sun, D.L*., Yu, Y.Y., Yang, H.Q., Liu, Q.H., & Shi, J.C.(2013). Comparison Between GOES-East and - West for Land Surface TemperatureRetrieval From a Dual-Window Algorithm. Ieee Geoscience and Remote SensingLetters, 10, 578-582, https://doi.org/10.1109/lgrs.2012.2214473 
    [185] Yu, S.S., Xin, X.Z*., & Liu, Q.H.(2013). Estimation of clear-sky longwave downward radiation from HJ-1B thermaldata. Science China-Earth Sciences, 56, 829-842, https://doi.org/10.1007/s11430-012-4507-z
    [186] Li, H., Liu, Q.H*., Du, Y.M., Jiang,J.X., & Wang, H.S. (2013). Evaluation of the NCEP and MODIS AtmosphericProducts for Single Channel Land Surface Temperature Retrieval With GroundMeasurements: A Case Study of HJ-1B IRS Data. Ieee Journal of Selected Topicsin Applied Earth Observations and Remote Sensing, 6, 1399-1408, https://doi.org/10.1109/jstars.2013.2255118
    [187] Zhang, H.L., Xin, X.Z*., Li, L., &Liu, Q.H. (2013). An Improved Parametric Model for Simulating Cloudy Sky DailyDirect Solar Radiation on Tilted Surfaces. Ieee Journal of Selected Topics inApplied Earth Observations and Remote Sensing, 6, 180-187, https://doi.org/10.1109/jstars.2012.2211000
    [188] Li, X*., Cheng, G.D., Liu, S.M., Xiao, Q., Ma, M.G., Jin, R.,Che, T., Liu, Q.H., Wang, W.Z., Qi, Y., Wen, J.G., Li, H.Y., Zhu, G.F., Guo,J.W., Ran, Y.H., Wang, S.G., Zhu, Z.L., Zhou, J., Hu, X.L., & Xu, Z.W.(2013). Heihe Watershed Allied Telemetry Experimental Research (HiWATER):Scientific Objectives and Experimental Design. Bulletin of the AmericanMeteorological Society, 94, 1145-1160, https://doi.org/10.1175/bams-d-12-00154.1 
    [189] Yao, Y.J*., Liu, Q., Liu, Q.H., & Gao, Y.H. (2012). Optimisingview angles for the estimation of leaf area index via entropy-differenceanalysis. Journal of Earth System Science, 121, 687-695, https://doi.org/10.1007/s12040-012-0178-6
    [190] Zhang, Z.J*., Zhang, L.X., Sun, G.Q., & Liu, Q.H. (2012). Amethod to estimate crop effects at higher frequencies by modeling and microwaveradiometric data. Science China-Earth Sciences, 55, 1159-1165, https://doi.org/10.1007/s11430-012-4410-7
    [191] Bai, J.H*., Li, J., Liu, Q.H., Wang, X., & Li, S.K. (2012).Diagnosing Cotton Farmland Quality Using Multi-Temporal Remotely Sensed Data.Sensor Letters, 10, 475-483, https://doi.org/10.1166/sl.2012.1869 
    [192] Huang, H.G*., Liu, Q., Liu, Q.H., & Qin, W.H. (2012). Validatingtheoretical simulations of thermal emission hot spot effects on maize canopies.International Journal of Remote Sensing, 33, 746-761, https://doi.org/10.1080/01431161.2011.577827
    [193] Yang, L*., Lin, M.S., Liu, Q.H., & Pan, D.L. (2012). Acoastal altimetry retracking strategy based on waveform classification andsub-waveform extraction. International Journal of Remote Sensing, 33,7806-7819, https://doi.org/10.1080/01431161.2012.701350 
    [194] Huang, H.G*., Liu, Q.H., Qin, W.H., Du, Y.M., & Li, X.W. (2011).Temporal patterns of thermal emission directionality of crop canopies. Journalof Geophysical Research-Atmospheres, 116, 18, https://doi.org/10.1029/2010jd014613
    [195] Ma, R.H., Duan, H.T*., Liu, Q.H.,& Loiselle, S.A. (2011). Approximate bottom contribution to remote sensingreflectance in Taihu Lake, China. Journal of Great Lakes Research, 37, 18-25, https://doi.org/10.1016/j.jglr.2010.12.002
    [196] Cheng, J*., Liang, S.L., Liu, Q.H., & Li, X.W. (2011).Temperature and Emissivity Separation From Ground-Based MIR Hyperspectral Data.Ieee Transactions on Geoscience and Remote Sensing, 49, 1473-1484, https://doi.org/10.1109/tgrs.2010.2076818
    [197] Bao, Y.F*., Chen, S.B*., Liu, Q.H., Xiao, Q., & Cao, C.X.(2011). Land surface temperature and emissivity retrieval by integrating MODISdata onboard Terra and Aqua satellites. International Journal of Remote Sensing,32, 1449-1469, https://doi.org/10.1080/01431160903559754 
    [198] Huang, H.G*., Liu, Q.H., & Qin, W.H. (2010). Thermal EmissionHot-Spot Effect of Crop Canopies-Part I: Simulation. Ieee Journal of SelectedTopics in Applied Earth Observations and Remote Sensing, 3, 313-322, https://doi.org/10.1109/jstars.2010.2046625
    [199] Liu, S.H., Liu, Q.A., Liu, Q.H*., Wen,J.G., & Li, X.W. (2010). The Angular and Spectral Kernel Model for BRDF andAlbedo Retrieval. Ieee Journal of Selected Topics in Applied Earth Observationsand Remote Sensing, 3, 241-256, https://doi.org/10.1109/jstars.2010.2048745 
    [200] Li, L., Xin, X.Z., Su, G.L., & Liu,Q.H*. (2010). Photosynthetically active radiation retrieval based onHJ-1A/B satellite data. Science China-Earth Sciences, 53, 81-91, https://doi.org/10.1007/s11430-010-4142-5
    [201] Sun, L., Sun, C.K., Liu, Q.H*., &Zhong, B. (2010). Aerosol optical depth retrieval by HJ-1/CCD supported byMODIS surface reflectance data. Science China-Earth Sciences, 53, 74-80, https://doi.org/10.1007/s11430-010-4134-5 
    [202] Li, X*., Li, X.W., Li, Z.Y., Ma, M.G., Wang, J., Xiao, Q., Liu,Q., Che, T., Chen, E.X., Yan, G.J., Hu, Z.Y., Zhang, L.X., Chu, R.Z., Su, P.X.,Liu, Q.H., Liu, S.M., Wang, J.D., Niu, Z., Chen, Y., Jin, R., Wang, W.Z., Ran,Y.H., Xin, X.Z., & Ren, H.Z. (2009). Watershed Allied TelemetryExperimental Research. Journal of Geophysical Research-Atmospheres, 114, 19, https://doi.org/10.1029/2008jd011590
    [203] Huang, H.G*., Chen, M., Liu, Q.H., Liu, Q., Zhang, Y., Zhao, L.Q.,& Qin, W.H. (2009). A realistic structure model for large-scale surfaceleaving radiance simulation of forest canopy and accuracy assessment.International Journal of Remote Sensing, 30, 5421-5439, https://doi.org/10.1080/01431160903130911
    [204] Wen, J.G*., Liu, Q., Liu, Q.H., Xiao, Q., & Li, X.W. (2009).Scale effect and scale correction of land-surface albedo in rugged terrain.International Journal of Remote Sensing, 30, 5397-5420, https://doi.org/10.1080/01431160903130903
    [205] Wen, J.G*., Liu, Q.H., Liu, Q., Xiao, Q., & Li, X.W. (2009).Parametrized BRDF for atmospheric and topographic correction and albedoestimation in Jiangxi rugged terrain, China. International Journal of RemoteSensing, 30, 2875-2896, https://doi.org/10.1080/01431160802558618 
    [206] Yang, G.J*., Liu, Q.H., Liu, Q., Huang, W.J., & Wang, J.H.(2009). Simulation of high-resolution mid-infrared (3-5 μm) images using anatmosphere radiative transfer analytic model. International Journal of RemoteSensing, 30, 6003-6022, https://doi.org/10.1080/01431160902798403 
    [207] Chen, L.F*., Gao, Y.H., Li, L., Liu, Q.H., & Gu, X.F. (2008).Forest NPP estimation based on MODIS data under cloudless condition. Science inChina Series D-Earth Sciences, 51, 331-338, https://doi.org/10.1007/s11430-008-0013-8
    [208] Cheng, J*., Liu, Q.H., Li, X.W., Xiao, Q., Liu, Q., & Du, Y.M.(2008). Correlation-based temperature and emissivity separation algorithm.Science in China Series D-Earth Sciences, 51, 357-369, https://doi.org/10.1007/s11430-008-0022-7
    [209] Yao, Y.J., Liu, Q.H*., Liu, Q., &Li, X.W. (2008). LAI retrieval and uncertainty evaluations for typicalrow-planted crops at different growth stages. Remote Sensing of Environment,112, 94-106, https://doi.org/10.1016/j.rse.2006.09.037 
    [210] Wen, J.G*., Liu, Q.H., Xiao, Q., Liu, Q., & Li, X.W. (2008).Modeling the land surface reflectance for optical remote sensing data in ruggedterrain. Science in China Series D-Earth Sciences, 51, 1169-1178, https://doi.org/10.1007/s11430-008-0085-5
    [211] Chen, L.F*., Gao, Y.H., Yang, L., Liu, Q.H., Go, X.F., & Tian,G.L. (2008). MODIS-derived daily PAR simulation from cloud-free images and itsvalidation. Solar Energy, 82, 528-534, https://doi.org/10.1016/j.solener.2007.12.001 
    [212] Liu, Q.H*., Huang, H.G., Qin, W.H., Fu, K.H., & Li, X.W.(2007). An extended 3-D radiosity-graphics combined model for studyingthermal-emission directionality of crop canopy. Ieee Transactions on Geoscienceand Remote Sensing, 45, 2900-2918, https://doi.org/10.1109/tgrs.2007.902272 
    [213] Sun, G.Y., Liu, Q.H*., Liu, Q., Ji,C.Y.Y., & Li, X.M. (2007). A novel approach for edge detection based on thetheory of universal gravity. Pattern Recognition, 40, 2766-2775, https://doi.org/10.1016/j.patcog.2007.01.006
    [214] Du, Y.M., Liu, Q.H., Chen, L.F., Liu, Q.A.,& Yu, T. (2007). Modeling directional brightness temperature of the winterwheat canopy at the ear stage. Ieee Transactions on Geoscience and RemoteSensing, 45, 3721-3739, https://doi.org/10.1109/tgrs.2007.903401 
    [215] Xin, J.F*., Tian, G.L., Liu, Q.H., & Chen, L.F. (2006).Combining vegetation index and remotely sensed temperature for estimation ofsoil moisture in China. International Journal of Remote Sensing, 27, 2071-2075,https://doi.org/10.1080/01431160500497549 
    [216] Chen, L.F., Gao, Y.H., Cheng, Y., Wei, Z.,Xiao, Q., Liu, X.H., Yu, T., Liu, Q.J., Gu, X.F., & Tian, G.L. (2005). Biomassestimation and uncertainty analysis based on CBERS-02 CCD camera data and fieldmeasurement. Science in China Series E-Technological Sciences, 48, 116-128, https://doi.org/10.1360/05ze1011
    [217] Li, J., Liu, Q.H., Liu, Q., Chen, L.F., Bo,J.H., & Li, S.K. (2005). Cotton pixel identification with CBERS-02 CCD databased on spectral knowledge. Science in China Series E-Technological Sciences,48, 129-144, https://doi.org/10.1360/05ze1013 
    [218] Xin, X.Z., Liu, X.H., Tang, Y., Tian, G.L.,Gu, X.F., Li, X.W., Zheng, H.S., & Chen, J.Y. (2005). Estimating surfaceevapotranspiration using combined MODIS and CBERS-02 data. Science in ChinaSeries E-Engineering & Materials Science, 48, 145-160, https://doi.org/10.1360/05ye0014
    [219] Chen, S.S*., Chen, L.F., Liu, Q.H., Li, X., & Tan, Q.Y. (2005).Remote sensing and GIS-based integrated analvsis of coastal changes and theirenvironmental impacts in Lingding Bay, Pearl River Estuary, South China. Ocean& Coastal Management, 48, 65-83, https://doi.org/10.1016/j.ocecoaman.2004.11.004 
    [220] Chen, L.F*., Li, Z.L., Liu, Q.H., Chen, S., Tang, Y., & Zhong,B. (2004). Definition of component effective emissivity for heterogeneous andnon-isothermal surfaces and its approximate calculation. International Journalof Remote Sensing, 25, 231-244, https://doi.org/10.1080/0143116031000116426 
    [221] Deng, R.R*., Liu, Q.H., Ke, R.P., Cheng, L., & Liu, X.P.(2004). Model for water pollution remote sensing based on double scattering andits application in the Zhujiang River outfall. Acta Oceanologica Sinica, 23,119-127 
    [222] Xiao, Q., Liu, Q.H., Li, X.W., Chen, L.F.,Liu, Q., & Xin, X.Z. (2003). A field measurement method of spectralemissivity and research on the feature of soil thermal infrared emissivity.Journal of Infrared and Millimeter Waves, 22, 373-378 
    [223] Chen, L.F*., Liu, Q.H., Fan, W.J., Li, X.W., Xiao, Q., Yan, G.J.,& Tian, G.L. (2002). A bi-directional gap model for simulating thedirectional thermal radiance of row crops. Science in China Series D-Earth Sciences,45, 1087-1098, https://doi.org/10.1360/02yd9106 
    [224] Liu, Q.A*., Liu, Q.H., Xiao, Q., & Tian, G.L. (2002). Study ongeometric correction of airborne multiangular imagery. Science in China SeriesD-Earth Sciences, 45, 1075-1086, https://doi.org/10.1360/02yd9105 
    [225] Ji, C.Y., Liu, Q.H., Sun, D.F., Wang, S.,Lin, P., & Li, X.W. (2001). Monitoring urban expansion with remote sensingin China. International Journal of Remote Sensing, 22, 1441-1455, https://doi.org/10.1080/01431160117207 
    [226] Chen, L.F*., Zhuang, J.L., Liu, Q.H., Xu, X.R., & Tian, G.L.(2000). Study on the law of radiant directionality of row crops. Science inChina Series E-Technological Sciences, 43, 70-82, https://doi.org/10.1007/bf02916581
    [227] Liu, Q.H*., Gu, X.F., Li, X.W., Jacob, F., Hanocq, J.F., Friedl,M., Strahler, A.H., Yu, T., & Tian, G.L. (2000). Study on thermal infraredemission directionality over crop canopies with TIR camera imagery. Science inChina Series E-Technological Sciences, 43, 95-103, https://doi.org/10.1007/bf02916583
    [228] Niu, Z*., Liu, Q.H., Gao, Y.C., Zhang, Q.Y., & Wang, C.Y.(2000). The gap probability model for canopy thermal infrared emission withnon-scattering approximation. Science in China Series E-Technological Sciences,43, 83-94, https://doi.org/10.1007/bf02916582 
    [229] Xu, X.R., Liu, Q.H., & Chen, J.Y. (1998).Synchronous retrieval of land surface temperature and emissivity. Science inChina Series D-Earth Sciences, 41, 658-668, https://doi.org/10.1007/bf02878749
    2.專著(參與編寫)
    (1)王琦安,柳欽火等,全球生態(tài)環(huán)境遙感監(jiān)測2021年度報告:全球陸域生態(tài)系統(tǒng)可持續(xù)發(fā)展態(tài)勢,測繪出版社,2022年06月。
    (2)王琦安,柳欽火等,全球生態(tài)環(huán)境遙感監(jiān)測2021年度報告:歐亞大陸草原生態(tài)狀況,測繪出版社,2022年06月。
    (3)王琦安,柳欽火等,全球生態(tài)環(huán)境遙感監(jiān)測2021年度報告:全球大宗糧油作物生產(chǎn)與糧食安全形勢,測繪出版社,2022年06月。
    (4)王琦安,柳欽火等,全球生態(tài)環(huán)境遙感監(jiān)測2021年度報告:全球典型湖泊生態(tài)環(huán)境狀況,,測繪出版社,2022年06月。
    (5)柳欽火,吳俊君,仲波,李靜,辛?xí)灾?,賈立等,“一帶一路”東南亞區(qū)生態(tài)環(huán)境遙感監(jiān)測,科學(xué)出版社,2019年4月。
    (6)辛?xí)灾?,張海龍,余珊珊,李麗,柳欽火等,地表輻射收支遙感方法與技術(shù),科學(xué)出版社,2019年1月。
    (7)仲波,李宏益,柳欽火,唐娉,辛?xí)灾?,李靜等,多源協(xié)同陸表定量遙感產(chǎn)品生產(chǎn)技術(shù)與系統(tǒng),北京:科學(xué)出版社,2018年9月。
    (8)聞建光,劉強,柳欽火,肖青,李小文,陸表二向反射特性遙感建模及反照率反演, 科學(xué)出版社,2015。
    (9)仲波,柳欽火,單小軍,穆西晗,多源光學(xué)遙感數(shù)據(jù)歸一化處理技術(shù)與方法,科學(xué)出版社,2015。
    (10)田國良、柳欽火、陳良富等,熱紅外遙感(第二版),電子工業(yè)出版社,2014。
    (11)柳欽火, 仲波, 吳紀桃, 肖志強, 王橋,環(huán)境遙感定量反演與同化,中國科學(xué)出版社, 2011。
    (12)柳欽火、辛?xí)灾?、唐娉、廖靜娟、吳炳方等,定量遙感模型、應(yīng)用及不確定性研究,科學(xué)出版社,2010。
    (13)王錦地、張立新、柳欽火、張兵、尹球等,中國典型地物波譜知識庫,科學(xué)出版社,2009。
    (14)田國良、柳欽火、陳良富、余濤、劉強、辛?xí)灾薜?,紅外遙感,電子工業(yè)出版社,2006。
    (15)李小文、汪駿發(fā)、王錦地、柳欽火,多角度與熱紅外對地遙感, 科學(xué)出版社,2001。
    3.專利授權(quán)
    (1)秦伯雄; 曹彪; 陳水森; 李丹; 杜永明; 歷華; 肖青; 柳欽火,一種糾正靜止衛(wèi)星地表溫度產(chǎn)品熱輻射方向性的方法,發(fā)明,授權(quán)號:CN115952697B,2023.06.06(發(fā)明專利權(quán)授予)
    (2)卞尊健; 李嘉昕; 范騰遠; 曹彪; 歷華; 杜永明; 肖青; 柳欽火,一種三維復(fù)雜地表葉面積指數(shù)反演方法及系統(tǒng),發(fā)明,授權(quán)號:CN113505486B,2023.12.29(發(fā)明專利權(quán)授予)
    (3)卞尊健; 范騰遠; 李嘉昕; 曹彪; 歷華; 杜永明; 肖青; 柳欽火,一種三維復(fù)雜地表遙感光學(xué)特征反演方法及系統(tǒng),發(fā)明,授權(quán)號:CN113516767B,2023.12.29(發(fā)明專利權(quán)授予)
    (4)柏軍華; 柳欽火; 肖青; 劉學(xué); 曹彪; 楊建,定量遙感地面試驗協(xié)同觀測方法及觀測平臺,發(fā)明,授權(quán)號:CN112857459B,2022.06.07(發(fā)明專利權(quán)授予)
    (5)卞尊健; 李嘉昕; 范騰遠; 曹彪; 歷華; 杜永明; 肖青; 柳欽火,基于輻射度的地表高分辨率光譜信息遙感反演方法,發(fā)明,授權(quán)號:CN113012276B,2021.09.24(發(fā)明專利權(quán)授予)
    (6)曹彪; 秦伯雄; 杜永明; 卞尊健; 歷華; 肖青; 柳欽火,糾正靜止衛(wèi)星地表上行長波輻射產(chǎn)品熱輻射方向性的方法,發(fā)明,授權(quán)號:CN112985607B,2021.09.24(發(fā)明專利權(quán)授予)
    (7)柏軍華; 柳欽火; 肖青; 李靜; 張召星,一種適用于野外連續(xù)觀測的植被株高自動測定方法及系統(tǒng),發(fā)明,授權(quán)號:CN112595243B,2022.05.17(發(fā)明專利權(quán)授予)
    (8)柏軍華; 杜永明; 肖青; 柳欽火; 張召星,一種持續(xù)自動模擬植被生長狀態(tài)的方法及系統(tǒng),發(fā)明,授權(quán)號:CN112632752B,2024.02.09(發(fā)明專利權(quán)授予)
    (9)卞尊健; 杜永明; 歷華; 曹彪; 肖青; 柳欽火,一種離散森林場景熱紅外輻射傳輸模擬方法,發(fā)明,授權(quán)號:CN112254820B,2021.04.27(發(fā)明專利權(quán)授予)
    (10)曹彪; 杜永明; 卞尊健; 歷華; 肖青; 柳欽火,一種高精度的熱輻射方向性半經(jīng)驗半物理模擬方法,發(fā)明,授權(quán)號:CN112198814B,2021.09.10(發(fā)明專利權(quán)授予)
    (11)卞尊健; 歷華; 杜永明; 曹彪; 肖青; 柳欽火,基于貝葉斯模型平均方法的地表組分溫度多算法集成算法,發(fā)明,授權(quán)號:CN112199634B,2021.05.11(發(fā)明專利權(quán)授予)
    (12)杜永明; 秦伯雄; 曹彪; 歷華; 卞尊健; 肖青; 柳欽火,一種小面元黑體擴束定標方法及系統(tǒng),發(fā)明,授權(quán)號:CN112129420B,2021.06.15(發(fā)明專利權(quán)授予)
    (13)辛?xí)灾? 彭志晴; 柳欽火,一種用于地表變量的非均勻性時空分析方法及系統(tǒng),發(fā)明,授權(quán)號:CN111814316B,2024.04.02(發(fā)明專利權(quán)授予)
    (14)李靜; 朱欣然; 柳欽火; 趙靜; 董亞冬,葉面積指數(shù)時間序列重建方法、裝置、設(shè)備及存儲介質(zhì),發(fā)明,授權(quán)號:CN111723328B,2024.02.13(發(fā)明專利權(quán)授予)
    (15)李靜; 林尚榮; 柳欽火; 趙靜; 董亞冬,全球中高分辨率植被總初級生產(chǎn)力產(chǎn)品的計算方法及裝置,發(fā)明,授權(quán)號:CN111582703B,2024.04.05(發(fā)明專利權(quán)授予)
    (16)李靜; 張虎; 柳欽火; 趙靜; 董亞冬,葉片葉綠素含量反演方法、裝置、電子設(shè)備及存儲介質(zhì),發(fā)明,授權(quán)號:CN111398178B,2023.05.16(發(fā)明專利權(quán)授予)
    (17)董亞冬; 李靜; 柳欽火; 趙靜,一種中分辨率葉面積指數(shù)產(chǎn)品的校正方法及裝置,發(fā)明,授權(quán)號:CN111402322B,2024.04.05(發(fā)明專利權(quán)授予)
    (18)柏軍華; 柳欽火; 肖青; 曹彪; 張召星,一種植被冠層垂直結(jié)構(gòu)參數(shù)測量方法、裝置及系統(tǒng),發(fā)明,授權(quán)號:CN110849329B,2021.06.25(發(fā)明專利權(quán)授予)
    (19)辛?xí)灾? 李福根; 彭志晴; 矯京均; 柳欽火,一種遙感影像中混合像元的日蒸散量的計算方法和系統(tǒng),發(fā)明,授權(quán)號:CN107843569B,2020.02.18(發(fā)明專利權(quán)授予)
    (20)柏軍華; 柳欽火; 肖青; 楊習(xí)榮; 孫剛,遙感地面定位試驗的多角度觀測裝置及方法,發(fā)明,授權(quán)號:CN106094886B,2019.08.06(發(fā)明專利權(quán)授予)
    (21)柏軍華; 柳欽火; 李靜; 肖青,一種作物長勢定量遙感監(jiān)測方法及系統(tǒng),發(fā)明,授權(quán)號:CN106018284B,2018.10.30(發(fā)明專利權(quán)授予)
    (22)李麗; 杜永明; 張海龍; 柏軍華; 辛?xí)灾? 柳欽火; 肖青,一種植被冠層光合有效輻射吸收比例的觀測系統(tǒng)及方法,發(fā)明,授權(quán)號:CN104568145B,2018.02.13(發(fā)明專利權(quán)授予)
    (23)仲波; 吳善龍; 柳欽火,一種高分辨率遙感數(shù)據(jù)大氣校正方法,發(fā)明,授權(quán)號:CN102955154B,2014.04.16(發(fā)明專利權(quán)授予)
    4.國家標準
    (1)陸地定量遙感產(chǎn)品真實性檢驗通用方法.葛詠; 胡茂桂; 王江浩; 李新; 王勁峰; 張仁華; 吳驊; 柳欽火; 王新鴻; 潘志強; 劉照言.國家標準, GB/T 39468-2020, 全國遙感技術(shù)標準化技術(shù)委員會(SAC/TC 327), 2020-11-19.
    (2)植被指數(shù)遙感產(chǎn)品真實性檢驗.聞建光; 彭菁菁; 游冬琴; 劉強; 唐勇; 肖青; 柳欽火; 李新; 范聞捷; 葛詠; 吳驊; 王新鴻; 劉照言. 國家標準, GB/T 40038-2021, 全國遙感技術(shù)標準化技術(shù)委員會(SAC/TC 327), 2021-04-30. 
    (3)葉面積指數(shù)遙感產(chǎn)品真實性檢驗.李靜; 趙靜; 鄒杰; 曾也魯; 柳欽火; 李新; 方紅亮; 唐伯惠; 范聞捷; 屈永華; 穆西晗; 姜小光; 陳爾學(xué); 吳文斌; 董亞冬; 王新鴻; 劉照言; 尹高飛; 徐保東. 國家標準, GB/T 40034-2021, 全國遙感技術(shù)標準化技術(shù)委員會(SAC/TC 327), 2021-04-30.
    (4)光合有效輻射遙感產(chǎn)品真實性檢驗.李麗; 辛?xí)灾? 張海龍; 聞建光; 吳驊; 王培娟; 高彥華; 姚延娟; 仲波; 余珊珊; 柏軍華; 杜永明; 柳欽火; 劉照言; 于江豐; 龔力峰. 國家標準, GB/T 41281-2022, 全國遙感技術(shù)標準化技術(shù)委員會(SAC/TC 327), 2022-03-09.
    (5)反照率遙感產(chǎn)品真實性檢驗.游冬琴; 聞建光; 劉強; 吳小丹; 林興穩(wěn); 唐勇; 肖青; 柳欽火; 李新; 焦子銻; 范聞捷; 馬明國; 劉照言; 王新鴻. 國家標準, GB/T 41279-2022, 全國遙感技術(shù)標準化技術(shù)委員會(SAC/TC 327), 2022-03-09.
    (6)氣溶膠光學(xué)厚度遙感產(chǎn)品真實性檢驗.仲波; 吳善龍; 陳武漢; 孫林; 張玉環(huán); 孫長奎; 周春艷; 楊愛霞; 吳俊君; 柳欽火; 劉照言; 聞建光; 李麗; 孫剛; 李凱濤. 國家標準, GB/T 41535-2022, 全國遙感技術(shù)標準化技術(shù)委員會(SAC/TC 327), 2022-07-11.
    (7)地表溫度遙感產(chǎn)品真實性檢驗.李召良; 唐伯惠; 吳驊; 周成虎; 李傳榮; 邱實; 尚國琲; 錢永剛; 段四波; 劉照言; 閻廣建; 劉向陽; 范錦龍; 張仁華; 冷佩; 趙偉; 任華忠; 唐榮林; 柳欽火; 鄭小坡; 姜小光; 趙恩宇; 高懋芳; 張霞; 于文憑. 國家標準, GB/T 41534-2022, 全國遙感技術(shù)標準化技術(shù)委員會(SAC/TC 327), 2022-07-11.