韩国亚洲伊人久久综合影院,日本在线观看公司入口视频,国产成人精品久久综合电影,久久极品免费视频

    首頁 > 科研隊(duì)伍 > 研究員/教授

研究員/教授

  • 姓名:石崇
  • 性別:
  • 專家類別:研究員/博導(dǎo)
  • 所屬部門:遙感科學(xué)國家重點(diǎn)實(shí)驗(yàn)室
  • 職務(wù):大氣環(huán)境遙感研究室主任
  • 職稱:研究員
  • 社會任職:
  • 電話:
  • 傳真:
  • 電子郵件:shichong@aircas.ac.cn
  • 個人網(wǎng)頁: 
  • 百人入選時間:
  • 杰青入選時間:
  • 通訊地址:北京市朝陽區(qū)大屯路甲20號北
  • 郵政編碼:

    簡歷

  •        石崇,中國科學(xué)院空天信息創(chuàng)新研究院,研究員,博士生導(dǎo)師,國家高層次青年人才項(xiàng)目獲得者,大氣環(huán)境遙感研究室主任。主要研究方向是大氣-海洋系統(tǒng)的輻射傳輸及其遙感算法的開發(fā)及應(yīng)用。研究重點(diǎn)是探索并研發(fā)輻射傳輸模式、氣溶膠、水色及太陽輻射衛(wèi)星遙感算法及相關(guān)產(chǎn)品。相關(guān)研究成果被我國風(fēng)云衛(wèi)星FY-3F、國際GOSAT-2、GCOM-C衛(wèi)星等官方采納,并受到央視新聞聯(lián)播、新華社、人民網(wǎng)等媒體報道。目前擔(dān)任The Innovation、Engineering、應(yīng)用氣象學(xué)報等多個期刊青年編委/編委。主持國家海外高層次人才計劃青年項(xiàng)目、國家自然科學(xué)基金委聯(lián)合基金重點(diǎn)、科技部基礎(chǔ)工作專項(xiàng)課題等項(xiàng)目。
    工作經(jīng)歷:
    2022/04 ~ 至今         中國科學(xué)院空天信息創(chuàng)新研究院        研究員
    2021/09 ~ 2022/03     中國科學(xué)院空天信息創(chuàng)新研究院         副研究員
    2020/04 ~ 2021/05     日本國立環(huán)境研究所(NIES)    特別研究員
    2015/09 ~ 2020/03     日本宇宙航空研究開發(fā)機(jī)構(gòu)(JAXA) 招聘研究員

    研究方向

  • (1)大氣-海洋輻射傳輸機(jī)理及模式開發(fā)
    (2)大氣氣溶膠及海色大氣校正遙感
    (3)云及太陽輻射遙感

    承擔(dān)科研項(xiàng)目情況

  • (1)基于風(fēng)云衛(wèi)星云特性反演和數(shù)據(jù)同化技術(shù)的西南渦暴雨預(yù)報影響研究,負(fù)責(zé)人,國家自然科學(xué)基金委聯(lián)合基金重點(diǎn)項(xiàng)目,2025.01~2028.12
    (2)海域氣溶膠高精度遙感, 負(fù)責(zé)人, 國家自然科學(xué)基金優(yōu)秀青年科學(xué)基金項(xiàng)目(海外), 2022-01~2024-12
    (3)水色遙感大氣校正研究, 負(fù)責(zé)人, 中國科學(xué)院人才項(xiàng)目, 2021-09~2026-08
    (4)天山北坡經(jīng)濟(jì)帶大氣污染狀況調(diào)查, 負(fù)責(zé)人, 科技部基礎(chǔ)工作專項(xiàng)課題, 2022-11~2025-10
    (5)基于多像素多波長時空約束的海岸帶氣溶膠光學(xué)特性遙感研究, 負(fù)責(zé)人, 國家自然科學(xué)基金面上項(xiàng)目, 2023-01~2026-12
    (6)氣溶膠及水色高精度同步遙感反演關(guān)鍵技術(shù), 負(fù)責(zé)人, 國家任務(wù), 2022-07~2023-12
    (7)Validation and accuracy analysis on GOSAT-2/CAI-2 aerosol products, 負(fù)責(zé)人, 其他任務(wù), 2021-11~2026-11

    獲獎及榮譽(yù)

  •  

    代表性成果

  • 近五年代表性論文
    [1] W. Wang, C. Shi*, H. Shang, et al. (2024), Development of an algorithm for simultaneous retrieval of cloud top height and cloud optical thickness combining radiative transfer and multi-source satellite information from O4 hyperspectral measurement. IEEE Transactions on Geoscience and Remote Sensing, 10.1109/TGRS.2024.3385030
    [2] J. Chen, C. Shi*, B. Zhao, et al. (2024), Assessment of Ocean Color Products from the New Generation Himawari-8 AHI Geostationary Satellite and Its Application in the Calculation of the Photosynthetically Active Radiation, IEEE Transactions on Geoscience and Remote Sensing
    [3] S. Yin, C. Shi*, H. Letu, et al. (2024), Reconstruction of PM2.5 concentration in East Asia based on wide-deep ensemble machine learning frameworks and estimation of the potential exposure level from 1981 to 2020, Engineering, https://doi.org/10.1016/j.eng.2024.09.025
    [4] A. Li, C. Shi*, S. Yin, et al. (2024), Variation of surface solar radiation components from 2016 to 2020 in China: Perspective from geostationary satellite observation with a high spatiotemporal resolution, Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2024.176264
    [5] H. Letu, R. Ma, T.Y. Nakajima, C. Shi*, et al. (2023) Surface Solar Radiation Compositions Observed from Himawari-8/9 and Fengyun-4 Series. Bulletin of the American Meteorological Society. 10.1175/BAMS-D-22-0154.1
    [6] C.Q. Tang, C. Shi*, H. Letu, et al. (2023), Evaluation and uncertainty analysis of Himawari-8 hourly aerosol product version 3.1 and its influence on surface solar radiation before and during the COVID-19 outbreak. Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2023.164456.
    [7] G. Tana, X. Ri, C. Shi*, et al. (2023), Retrieval of cloud microphysical properties from Himawari-8/AHI infrared channels and its application in surface shortwave downward radiation estimation in the sun glint region. Remote sensing of Environment, 290, 113548.
    [8] C. Shi, M. Hashimoto, K. Shiomi, et al. (2020), Development of an algorithm to retrieve aerosol optical properties over water using an artificial neural network radiative transfer scheme: First result from GOSAT-2/CAI-2. IEEE Transactions on Geoscience and Remote Sensing, doi:10.1109/TGRS.2020.3038892.
    [9] C. Shi, T. Nakajima, and M. Hashimoto (2019), Remote sensing of aerosol properties from multi-wavelength and multi-pixel information over the ocean. Atmospheric Chemistry and Physics, 19, 2461-2475. 
    [10] C. Shi, and T. Nakajima (2018), Simultaneous determination of aerosol optical thickness and water leaving radiance from multispectral measurements in coastal waters, Atmospheric Chemistry and Physics, 18, 3865-3884. 
     
    近五年代表性專著
    [1] C. Shi, C. Tang, J. Xu, S. Yin, L. Rao, H. Letu (2024), Remote Sensing of Tropospheric Aerosol Optical Depth From Multispectral Monodirectional Space-Based Observations, Comprehensive Remote Sensing
    [2] 石崇, 張曉涵, FY3/MERSI 海洋快速輻射傳輸模型及大氣訂正, 國家衛(wèi)星氣象中心, 2022-12
    [3] M. Hashimoto, C. Shi, and T. Nakajima (2021), GOSAT-2 CAI-2 Level 2 aerosol retrieval Algorithm Theoretical Basis Document (ATBD), National Institute for Environmental Studies, Japan.
    [4] M. Hashimoto, C. Shi, and T. Nakajima (2020), GOSAT-2/IBUKI-2 Data Users Handbook: CAI-2 Level 2 Aerosol Property Algorithm, National Institute for Environmental Studies, Japan.
    [5] M. Hashimoto, C. Shi (2020), GOSAT-2 TANSO-CAI-2 L2 Pre-processing Algorithm Theoretical Basis Document (ATBD), National Institute for Environmental Studies & Japan Aerospace Exploration Agency, Japan.